144 research outputs found

    Well-posed initial-boundary value problem for the harmonic Einstein equations using energy estimates

    Get PDF
    In recent work, we used pseudo-differential theory to establish conditions that the initial-boundary value problem for second order systems of wave equations be strongly well-posed in a generalized sense. The applications included the harmonic version of the Einstein equations. Here we show that these results can also be obtained via standard energy estimates, thus establishing strong well-posedness of the harmonic Einstein problem in the classical sense.Comment: More explanatory material and title, as will appear in the published article in Classical and Quantum Gravit

    Fast and Slow solutions in General Relativity: The Initialization Procedure

    Get PDF
    We apply recent results in the theory of PDE, specifically in problems with two different time scales, on Einstein's equations near their Newtonian limit. The results imply a justification to Postnewtonian approximations when initialization procedures to different orders are made on the initial data. We determine up to what order initialization is needed in order to detect the contribution to the quadrupole moment due to the slow motion of a massive body as distinct from initial data contributions to fast solutions and prove that such initialization is compatible with the constraint equations. Using the results mentioned the first Postnewtonian equations and their solutions in terms of Green functions are presented in order to indicate how to proceed in calculations with this approach.Comment: 14 pages, Late

    Boundary conditions for coupled quasilinear wave equations with application to isolated systems

    Get PDF
    We consider the initial-boundary value problem for systems of quasilinear wave equations on domains of the form [0,T]×Σ[0,T] \times \Sigma, where Σ\Sigma is a compact manifold with smooth boundaries Σ\partial\Sigma. By using an appropriate reduction to a first order symmetric hyperbolic system with maximal dissipative boundary conditions, well posedness of such problems is established for a large class of boundary conditions on Σ\partial\Sigma. We show that our class of boundary conditions is sufficiently general to allow for a well posed formulation for different wave problems in the presence of constraints and artificial, nonreflecting boundaries, including Maxwell's equations in the Lorentz gauge and Einstein's gravitational equations in harmonic coordinates. Our results should also be useful for obtaining stable finite-difference discretizations for such problems.Comment: 22 pages, no figure

    The Initial-Boundary Value Problem in General Relativity

    Full text link
    In this article we summarize what is known about the initial-boundary value problem for general relativity and discuss present problems related to it.Comment: 11 pages, 2 figures. Contribution to a special volume for Mario Castagnino's seventy fifth birthda

    Relativistic Lagrange Formulation

    Get PDF
    It is well-known that the equations for a simple fluid can be cast into what is called their Lagrange formulation. We introduce a notion of a generalized Lagrange formulation, which is applicable to a wide variety of systems of partial differential equations. These include numerous systems of physical interest, in particular, those for various material media in general relativity. There is proved a key theorem, to the effect that, if the original (Euler) system admits an initial-value formulation, then so does its generalized Lagrange formulation.Comment: 34 pages, no figures, accepted in J. Math. Phy

    Numerical stability of the AA evolution system compared to the ADM and BSSN systems

    Full text link
    We explore the numerical stability properties of an evolution system suggested by Alekseenko and Arnold. We examine its behavior on a set of standardized testbeds, and we evolve a single black hole with different gauges. Based on a comparison with two other evolution systems with well-known properties, we discuss some of the strengths and limitations of such simple tests in predicting numerical stability in general.Comment: 16 pages, 12 figure

    Strongly hyperbolic second order Einstein's evolution equations

    Full text link
    BSSN-type evolution equations are discussed. The name refers to the Baumgarte, Shapiro, Shibata, and Nakamura version of the Einstein evolution equations, without introducing the conformal-traceless decomposition but keeping the three connection functions and including a densitized lapse. It is proved that a pseudo-differential first order reduction of these equations is strongly hyperbolic. In the same way, densitized Arnowitt-Deser-Misner evolution equations are found to be weakly hyperbolic. In both cases, the positive densitized lapse function and the spacelike shift vector are arbitrary given fields. This first order pseudodifferential reduction adds no extra equations to the system and so no extra constraints.Comment: LaTeX, 16 pages, uses revtex4. Referee corections and new appendix added. English grammar improved; typos correcte
    corecore