2,427 research outputs found
Induced Representations of Quantum Kinematical Algebras and Quantum Mechanics
Unitary representations of kinematical symmetry groups of quantum systems are
fundamental in quantum theory. We propose in this paper its generalization to
quantum kinematical groups. Using the method, proposed by us in a recent paper
(olmo01), to induce representations of quantum bicrossproduct algebras we
construct the representations of the family of standard quantum inhomogeneous
algebras . This family contains the quantum
Euclidean, Galilei and Poincar\'e algebras, all of them in (1+1) dimensions. As
byproducts we obtain the actions of these quantum algebras on regular co-spaces
that are an algebraic generalization of the homogeneous spaces and --Casimir
equations which play the role of --Schr\"odinger equations.Comment: LaTeX 2e, 20 page
Induced representations of quantum kinematical algebras
We construct the induced representations of the null-plane quantum Poincar\'e
and quantum kappa Galilei algebras in (1+1) dimensions. The induction procedure
makes use of the concept of module and is based on the existence of a pair of
Hopf algebras with a nondegenerate pairing and dual bases.Comment: 8 pages,LaTeX2e, to be published in the Proceedings of XXIII
International Colloquium on Group-Theoretical Methods in Physics, Dubna
(Russia), 31.07--05.08, 200
Representations of Quantum Bicrossproduct Algebras
We present a method to construct induced representations of quantum algebras
having the structure of bicrossproduct. We apply this procedure to some quantum
kinematical algebras in (1+1)--dimensions with this kind of structure:
null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and
quantum kappa Galilei algebra.Comment: LaTeX 2e, 35 page
Central limit theorem for multiplicative class functions on the symmetric group
Hambly, Keevash, O'Connell and Stark have proven a central limit theorem for
the characteristic polynomial of a permutation matrix with respect to the
uniform measure on the symmetric group. We generalize this result in several
ways. We prove here a central limit theorem for multiplicative class functions
on symmetric group with respect to the Ewens measure and compute the covariance
of the real and the imaginary part in the limit. We also estimate the rate of
convergence with the Wasserstein distance.Comment: 23 pages; the mathematics is the same as in the previous version, but
there are several improvments in the presentation, including a more intuitve
name for the considered function
Multiple solutions for asteroid orbits: Computational procedure and applications
We describe the Multiple Solutions Method, a one-dimensional sampling of the six-dimensional orbital confidence region that is widely applicable in the field of asteroid orbit determination. In many situations there is one predominant direction of uncertainty in an orbit determination or orbital prediction, i.e., a ``weak'' direction. The idea is to record Multiple Solutions by following this, typically curved, weak direction, or Line Of Variations (LOV). In this paper we describe the method and give new insights into the mathematics behind this tool. We pay particular attention to the problem of how to ensure that the coordinate systems are properly scaled so that the weak direction really reflects the intrinsic direction of greatest uncertainty. We also describe how the multiple solutions can be used even in the absence of a nominal orbit solution, which substantially broadens the realm of applications. There are numerous applications for multiple solutions; we discuss a few problems in asteroid orbit determination and prediction where we have had good success with the method. In particular, we show that multiple solutions can be used effectively for potential impact monitoring, preliminary orbit determination, asteroid identification, and for the recovery of lost asteroids
Universal R-matrix for null-plane quantized Poincar{\'e} algebra
The universal --matrix for a quantized Poincar{\'e} algebra introduced by Ballesteros et al is evaluated. The solution is obtained
as a specific case of a formulated multidimensional generalization to the
non-standard (Jordanian) quantization of .Comment: 9 pages, LaTeX, no figures. The example on page 5 has been
supplemented with the full descriptio
- …
