18 research outputs found
Molecular Mechanism of Capacitative Calcium Entry Deficits in Familial Alzheimer’s Disease
Poster PresentationPresenilin (PS) is the catalytic subunit of the gamma-secretase which is responsible for the cleavage of
amyloid precursor protein to form beta amyloid (Aβ). Mutations in PS associated with familial
Alzheimer’s disease (FAD) increase the Aβ plaques formation in the brain and cause neurodegeneration.
Apart from this, FAD-linked PS mutations have been demonstrated to disrupt intracellular calcium (Ca2+)
regulation. Accumulating evidence suggests that Ca2+ disruption may play a proximal role in the AD
pathogenesis. Mutant PS exaggerated Ca2+ release from the endoplasmic reticulum (ER). It also attenuated
Ca2+ entry through the capacitative Ca2+ entry (CCE) pathway, yet, the mechanism is not fully understood.
Using a human neuroblast cell line SH-SY5Y and Ca2+ imaging technique, we observed CCE deficits in
FAD-linked PS1-M146L retroviral infected cell. The attenuation of CCE in PS1 mutant cells was not
mediated by the down-regulation of STIM1 and Orai1 expression, the known essential molecular players
in the CCE pathway. Instead, we identified a molecular interaction between PS and STIM1 proteins by
immunoprecipitation. On the other hand, immunofluorescence staining showed a significant reduction in
puncta formation after ER Ca2+ depleted by thapsigargin in cells infected with PS1-M146L as compared to
the wild type PS1 infected cells. Taken together, our results suggest a molecular mechanism for the CCE
deficits in FAD associated with PS1 mutations. The interaction of mutant PS1 with STIM1 exerts a
negative impact on its oligomerization and/or its interaction with Orai1. Our results may suggest molecular
targets for the development of therapeutic agents that help to treat the disease.published_or_final_versio
Ornithine transcarbamylase deficiency with persistent abnormality in cerebral glutamate metabolism in adults
Mechanistic insights into the efficacy of memantine in treating certain drug addictions
The deleterious effects of the drug addiction epidemic are compounded by treatment strategies that are only marginally efficacious. Memantine is a unique glutamatergic medication with proven ability to attenuate drug addiction in preclinical models. However, clinical translational studies are inconsistent. In this review, we summarize preclinical evidences and clinical trials that investigated the efficacy of memantine in treating patients with alcohol, opiate, cocaine, and nicotine use disorders and discuss the results from a mechanistic point of view. Memantine has shown efficacy in reducing alcohol and opiate craving, consumption, and withdrawal severity. However, in cocaine and nicotine use disorders, memantine did not have significant effect on cravings or consumption. Additionally, memantine was associated with increased subjective effects of alcohol, cocaine, and nicotine. We discuss possible mechanisms behind this variability. Since memantine transiently blocks NMDA receptors and protects neurons from overstimulation by excessive synaptic glutamate, its efficacy should be observed in drug phases that cause hyperglutamatergic states, while hypoglutamatergic drug use states would not resolve with blocking NMDA receptors. Second, memantine pharmacokinetic studies have been done in rodents and healthy volunteers, but not in patients with substance use disorder. Memantine, opiates, cocaine, and nicotine share the same transporter family at the blood brain barrier. This shared transport mechanism could impact brain concentrations of memantine and its effects. In conclusion, memantine remains an intriguing compound in our pharmacopeia with controversial results in treating certain aspects of drug addiction. Further studies are needed to understand the clinical and biological correlates of its efficacy
