2,741 research outputs found

    Ramp wave loading experiments driven by heavy ion beams: a feasibility study

    Get PDF
    A new design for heavy-ion beam driven ramp wave loading experiments is suggested and analyzed. The proposed setup utilizes the long stopping ranges and the variable focal spot geometry of the high-energy uranium beams available at the GSI Helmholtzzentrum für Schwerionenforschung and Facility for Antiproton and Ion Research accelerator centers in Darmstadt, Germany. The release wave created by ion beams can be utilized to create a planar ramp loading of various samples. In such experiments, the predicted high pressure amplitudes (up to 10 Mbar) and short timescales of compression (<10 ns) will allow to test the time-dependent material deformation at unprecedented extreme conditions

    Bounds for graph regularity and removal lemmas

    Get PDF
    We show, for any positive integer k, that there exists a graph in which any equitable partition of its vertices into k parts has at least ck^2/\log^* k pairs of parts which are not \epsilon-regular, where c,\epsilon>0 are absolute constants. This bound is tight up to the constant c and addresses a question of Gowers on the number of irregular pairs in Szemer\'edi's regularity lemma. In order to gain some control over irregular pairs, another regularity lemma, known as the strong regularity lemma, was developed by Alon, Fischer, Krivelevich, and Szegedy. For this lemma, we prove a lower bound of wowzer-type, which is one level higher in the Ackermann hierarchy than the tower function, on the number of parts in the strong regularity lemma, essentially matching the upper bound. On the other hand, for the induced graph removal lemma, the standard application of the strong regularity lemma, we find a different proof which yields a tower-type bound. We also discuss bounds on several related regularity lemmas, including the weak regularity lemma of Frieze and Kannan and the recently established regular approximation theorem. In particular, we show that a weak partition with approximation parameter \epsilon may require as many as 2^{\Omega(\epsilon^{-2})} parts. This is tight up to the implied constant and solves a problem studied by Lov\'asz and Szegedy.Comment: 62 page

    Helly-Type Theorems in Property Testing

    Full text link
    Helly's theorem is a fundamental result in discrete geometry, describing the ways in which convex sets intersect with each other. If SS is a set of nn points in RdR^d, we say that SS is (k,G)(k,G)-clusterable if it can be partitioned into kk clusters (subsets) such that each cluster can be contained in a translated copy of a geometric object GG. In this paper, as an application of Helly's theorem, by taking a constant size sample from SS, we present a testing algorithm for (k,G)(k,G)-clustering, i.e., to distinguish between two cases: when SS is (k,G)(k,G)-clusterable, and when it is ϵ\epsilon-far from being (k,G)(k,G)-clusterable. A set SS is ϵ\epsilon-far (0<ϵ1)(0<\epsilon\leq1) from being (k,G)(k,G)-clusterable if at least ϵn\epsilon n points need to be removed from SS to make it (k,G)(k,G)-clusterable. We solve this problem for k=1k=1 and when GG is a symmetric convex object. For k>1k>1, we solve a weaker version of this problem. Finally, as an application of our testing result, in clustering with outliers, we show that one can find the approximate clusters by querying a constant size sample, with high probability

    A new method for constructing small-bias spaces from Hermitian codes

    Full text link
    We propose a new method for constructing small-bias spaces through a combination of Hermitian codes. For a class of parameters our multisets are much faster to construct than what can be achieved by use of the traditional algebraic geometric code construction. So, if speed is important, our construction is competitive with all other known constructions in that region. And if speed is not a matter of interest the small-bias spaces of the present paper still perform better than the ones related to norm-trace codes reported in [12]

    How does an interacting many-body system tunnel through a potential barrier to open space?

    Get PDF
    The tunneling process in a many-body system is a phenomenon which lies at the very heart of quantum mechanics. It appears in nature in the form of alpha-decay, fusion and fission in nuclear physics, photoassociation and photodissociation in biology and chemistry. A detailed theoretical description of the decay process in these systems is a very cumbersome problem, either because of very complicated or even unknown interparticle interactions or due to a large number of constitutent particles. In this work, we theoretically study the phenomenon of quantum many-body tunneling in a more transparent and controllable physical system, in an ultracold atomic gas. We analyze a full, numerically exact many-body solution of the Schr\"odinger equation of a one-dimensional system with repulsive interactions tunneling to open space. We show how the emitted particles dissociate or fragment from the trapped and coherent source of bosons: the overall many-particle decay process is a quantum interference of single-particle tunneling processes emerging from sources with different particle numbers taking place simultaneously. The close relation to atom lasers and ionization processes allows us to unveil the great relevance of many-body correlations between the emitted and trapped fractions of the wavefunction in the respective processes.Comment: 18 pages, 4 figures (7 pages, 2 figures supplementary information

    Infinite matrices may violate the associative law

    Full text link
    The momentum operator for a particle in a box is represented by an infinite order Hermitian matrix PP. Its square P2P^2 is well defined (and diagonal), but its cube P3P^3 is ill defined, because PP2P2PP P^2\neq P^2 P. Truncating these matrices to a finite order restores the associative law, but leads to other curious results.Comment: final version in J. Phys. A28 (1995) 1765-177
    corecore