1,452 research outputs found
Geometrically induced singular behavior of entanglement
We show that the geometry of the set of quantum states plays a crucial role
in the behavior of entanglement in different physical systems. More
specifically it is shown that singular points at the border of the set of
unentangled states appear as singularities in the dynamics of entanglement of
smoothly varying quantum states. We illustrate this result by implementing a
photonic parametric down conversion experiment. Moreover, this effect is
connected to recently discovered singularities in condensed matter models.Comment: v2: 4 pags, 4 figs. A discussion before the proof of Proposition 1
and tomographic results were included, Propostion 2 was removed and the
references were fixe
Cosmological Constraints on Bulk Neutrinos
Recent models invoking extra spacelike dimensions inhabited by (bulk)
neutrinos are shown to have significant cosmological effects if the size of the
largest extra dimension is R > 1 fm. We consider effects on cosmic microwave
background anisotropies, big bang nucleosynthesis, deuterium and Li-6
photoproduction, diffuse photon backgrounds, and structure formation. The
resulting constraints can be stronger than either bulk graviton overproduction
constraints or laboratory constraints.Comment: matches published versio
DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation
The global sulphur cycle has been simulated using a general circulation model with a focus on the source and oxidation of atmospheric dimethylsulphide (DMS). The sensitivity of atmospheric DMS to the oceanic DMS climatology, the parameterisation of the sea-air transfer and to the oxidant fields have been studied. The importance of additional oxidation pathways (by O<sub>3</sub> in the gas- and aqueous-phases and by BrO in the gas phase) not incorporated in global models has also been evaluated. While three different climatologies of the oceanic DMS concentration produce rather similar global DMS fluxes to the atmosphere at 24-27 Tg S yr <sup>-1</sup>, there are large differences in the spatial and seasonal distribution. The relative contributions of OH and NO<sub>3</sub> radicals to DMS oxidation depends critically on which oxidant fields are prescribed in the model. Oxidation by O<sub>3</sub> appears to be significant at high latitudes in both hemispheres. Oxidation by BrO could be significant even for BrO concentrations at sub-pptv levels in the marine boundary layer. The impact of such refinements on the DMS chemistry onto the indirect radiative forcing by anthropogenic sulphate aerosols is also discussed
DADA: data assimilation for the detection and attribution of weather and climate-related events
A new nudging method for data assimilation, delay‐coordinate nudging, is presented. Delay‐coordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time step. Numerical experiments with a low‐order chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an unoptimized formulation of the delay‐nudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delay‐coordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonal‐to‐decadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures
Neutrino anomalies and large extra dimensions
Theories with large extra dimensions can generate small neutrino masses when
the standard model neutrinos are coupled to singlet fermions propagating in
higher dimensions. The couplings can also generate mass splittings and mixings
among the flavour neutrinos in the brane. We systematically study the minimal
scenario involving only one singlet bulk fermion coupling weakly to the flavour
neutrinos. We explore the neutrino mass structures in the brane that can
potentially account for the atmospheric, solar and LSND anomalies
simultaneously in a natural way. We demonstrate that in the absence of a priori
mixings among the SM neutrinos, it is not possible to reconcile all these
anomalies. The presence of some structure in the mass matrix of the SM
neutrinos can solve this problem. This is exemplified by the Zee model, which
when embedded in extra dimensions in a minimal way can account for all the
neutrino anomalies.Comment: 23 Revtex pages with 2 eps figure
A scheme with two large extra dimensions confronted with neutrino physics
We investigate a particle physics model in a six-dimensional spacetime, where
two extra dimensions form a torus. Particles with Standard Model charges are
confined by interactions with a scalar field to four four-dimensional branes,
two vortices accommodating ordinary type fermions and two antivortices
accommodating mirror fermions. We investigate the phenomenological implications
of this multibrane structure by confronting the model with neutrino physics
data.Comment: LATEX, 24 pages, 9 figures, minor changes in the tex
Neutrino Oscillations via the Bulk
We investigate the possibility that the large mixing of neutrinos is induced
by their large coupling to a five-dimensional bulk neutrino. In the strong
coupling limit the model is exactly soluble. It gives rise to an oscillation
amplitude whose squared-mass difference is independent of the channel, thus
making it impossible to explain both the solar and the atmospheric neutrino
oscillations simultaneously.Comment: References added and rearranged, typos corrected, a graph added, and
more detailed explanations provided. To appear in Physical Review
CP asymmetry in in a general two-Higgs-doublet model with fourth-generation quarks
We discuss the time-dependent CP asymmetry of decay in an
extension of the Standard Model with both two Higgs doublets and additional
fourth-generation quarks. We show that although the Standard Model with
two-Higgs-doublet and the Standard model with fourth generation quarks alone
are not likely to largely change the effective from the decay of
, the model with both additional Higgs doublet and
fourth-generation quarks can easily account for the possible large negative
value of without conflicting with other experimental
constraints. In this model, additional large CP violating effects may arise
from the flavor changing Yukawa interactions between neutral Higgs bosons and
the heavy fourth generation down type quark, which can modify the QCD penguin
contributions. With the constraints obtained from processes
such as and , this model can lead to the
effective to be as large as in the CP asymmetry of .Comment: 13 pages, 5 figures, references added, to appear in Eur.Phys.J.
- …
