42 research outputs found

    Probing scattering phase shifts by attosecond streaking

    Full text link
    Attosecond streaking is one of the most fundamental processes in attosecond science allowing for a mapping of temporal (i.e. phase) information on the energy domain. We show that on the single-particle level attosecond streaking time shifts contain spectral phase information associated with the Eisenbud-Wigner-Smith (EWS) time delay, provided the influence of the streaking infrared field is properly accounted for. While the streaking phase shifts for short-ranged potentials agree with the associated EWS delays, Coulomb potentials require special care. We show that the interaction between the outgoing electron and the combined Coulomb and IR laser fields lead to a streaking phase shift that can be described classically

    Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene

    Get PDF
    Visualizing chemical reactions as they occur requires atomic spatial and femtosecond temporal resolution. Here, we report imaging of the molecular structure of acetylene (C2H2) 9 femtoseconds after ionization. Using mid-infrared laser–induced electron diffraction (LIED), we obtained snapshots as a proton departs the [C2H2]2+ ion. By introducing an additional laser field, we also demonstrate control over the ultrafast dissociation process and resolve different bond dynamics for molecules oriented parallel versus perpendicular to the LIED field. These measurements are in excellent agreement with a quantum chemical description of field-dressed molecular dynamicsPostprint (author's final draft

    Time-resolved photoemission by attosecond streaking: extraction of time information

    Full text link
    Attosecond streaking of atomic photoemission holds the promise to provide unprecedented information on the release time of the photoelectron. We show that attosecond streaking phase shifts indeed contain timing (or spectral phase) information associated with the Eisenbud-Wigner-Smith time delay matrix of quantum scattering. However, this is only accessible if the influence of the streaking infrared (IR) field on the emission process is properly accounted for. The IR probe field can strongly modify the observed streaking phase shift. We show that the part of the phase shift ("time shift") due to the interaction between the outgoing electron and the combined Coulomb and IR laser fields can be described classically. By contrast, the strong initial-state dependence of the streaking phase shift is only revealed through the solution of the time-dependent Schr\"odinger equation in its full dimensionality. We find a time delay between the hydrogenic 2s and 2p initial states in He+ exceeding 20as for a wide range of IR intensities and XUV energies

    Biosafety: future priorities for research in health care

    Full text link

    Sequence motifs in a flagellin of Pseudomonas putida

    No full text

    Investigations on Mannose-6-Phosphate Receptor Mediated Protein Uptake

    No full text
    corecore