128 research outputs found

    Storing images in warm atomic vapor

    Full text link
    Reversible and coherent storage of light in atomic medium is a key-stone of future quantum information applications. In this work, arbitrary two-dimensional images are slowed and stored in warm atomic vapor for up to 30 μ\mus, utilizing electromagnetically induced transparency. Both the intensity and the phase patterns of the optical field are maintained. The main limitation on the storage resolution and duration is found to be the diffusion of atoms. A techniqueanalogous to phase-shift lithography is employed to diminish the effect of diffusion on the visibility of the reconstructed image

    Universal Spectra of Coherent Atoms in a Recurrent Random Walk

    Full text link
    The probability of a random walker to return to its starting point in dimensions one and two is unity, a theorem first proven by G. Polya. The recurrence probability -- the probability to be found at the origin at a time t, is a power law with a critical exponent d/2 in dimensions d=1,2. We report an experiment that directly measures the Laplace transform of the recurrence probability in one dimension using Electromagnetically Induced Transparency (EIT) of coherent atoms diffusing in a vapor-cell filled with buffer gas. We find a regime where the limiting form of the complex EIT spectrum is universal and only depends on the effective dimensionality in which the random recurrence takes place. In an effective one-dimensional diffusion setting, the measured spectrum exhibits power law dependence over two decades in the frequency domain with a critical exponent of 0.56 close to the expected value 0.5. Possible extensions to more elaborate diffusion schemes are briefly discussed.Comment: 5 pages, 3 figure

    All-optical reconstruction of atomic ground-state population

    Full text link
    The population distribution within the ground-state of an atomic ensemble is of large significance in a variety of quantum optics processes. We present a method to reconstruct the detailed population distribution from a set of absorption measurements with various frequencies and polarizations, by utilizing the differences between the dipole matrix elements of the probed transitions. The technique is experimentally implemented on a thermal rubidium vapor, demonstrating a population-based analysis in two optical pumping examples. The results are used to verify and calibrate an elaborated numerical model, and the limitations of the reconstruction scheme which result from the symmetry properties of the dipole matrix elements are discussed.Comment: 6 pages, 4 figure

    Self-Similar Modes of Coherent Diffusion

    Full text link
    Self-similar solutions of the coherent diffusion equation are derived and measured. The set of real similarity solutions is generalized by the introduction of a nonuniform phase surface, based on the elegant Gaussian modes of optical diffraction. In an experiment of light storage in a gas of diffusing atoms, a complex initial condition is imprinted, and its diffusion dynamics is monitored. The self-similarity of both the amplitude and the phase pattern is demonstrated, and an algebraic decay associated with the mode order is measured. Notably, as opposed to a regular diffusion spreading, a self-similar contraction of a special subset of the solutions is predicted and observed.Comment: 10 pages, 5 figure

    Measurement of Dicke Narrowing in Electromagnetically Induced Transparency

    Get PDF
    Dicke narrowing is a phenomena that dramatically reduces the Doppler width of spectral lines, due to frequent velocity-changing collisions. A similar phenomena occurs for electromagnetically induced transparency (EIT) resonances, and facilitates ultra-narrow spectral features in room-temperature vapor. We directly measure the Dicke-like narrowing by studying EIT line-shapes as a function of the angle between the pump and the probe beams. The measurements are in good agreement with an analytic theory with no fit parameters. The results show that Dicke narrowing can increase substantially the tolerance of hot-vapor EIT to angular deviations. We demonstrate the importance of this effect for applications such as imaging and spatial solitons using a single-shot imaging experiment, and discuss the implications on the feasibility of storing images in atomic vapor.Comment: Introduction revise

    Theory of Dicke narrowing in coherent population trapping

    Get PDF
    The Doppler effect is one of the dominant broadening mechanisms in thermal vapor spectroscopy. For two-photon transitions one would naively expect the Doppler effect to cause a residual broadening, proportional to the wave-vector difference. In coherent population trapping (CPT), which is a narrow-band phenomenon, such broadening was not observed experimentally. This has been commonly attributed to frequent velocity-changing collisions, known to narrow Doppler-broadened one-photon absorption lines (Dicke narrowing). Here we show theoretically that such a narrowing mechanism indeed exists for CPT resonances. The narrowing factor is the ratio between the atom's mean free path and the wavelength associated with the wave-vector difference of the two radiation fields. A possible experiment to verify the theory is suggested.Comment: 6 pages, 2 figures; Introduction revise

    Topological stability of stored optical vortices

    Get PDF
    We report an experiment in which an optical vortex is stored in a vapor of Rb atoms. Due to its 2\pi phase twist, this mode, also known as the Laguerre-Gauss mode, is topologically stable and cannot unwind even under conditions of strong diffusion. To supplement our finding, we stored a flat phase Gaussian beam with a dark center. Contrary to the optical vortex, which stays stable for over 100 microseconds, the dark center in the retrieved flat-phased image was filled with light at storage times as small as 10 microseconds. This experiment proves that higher electromagnetic modes can be converted into atomic coherences, and that modes with phase singularities are robust to decoherence effects such as diffusion. This opens the possibility to more elaborate schemes for two dimensional information storage in atomic vapors.Comment: 4 pages, 4 figures v2: minor grammatical corrections v3: problem with references fixed v4: minor clarifications added to the tex
    corecore