198 research outputs found
Vacuum Cherenkov radiation
Within the classical Maxwell-Chern-Simons limit of the Standard-Model
Extension (SME), the emission of light by uniformly moving charges is studied
confirming the possibility of a Cherenkov-type effect. In this context, the
exact radiation rate for charged magnetic point dipoles is determined and found
in agreement with a phase-space estimate under certain assumptions.Comment: 4 pages, REVTeX
Non-Relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity
Based on unified theory of electromagnetic interactions and gravitational
interactions, the non-relativistic limit of the equation of motion of a charged
Dirac particle in gravitational field is studied. From the Schrodinger equation
obtained from this non-relativistic limit, we could see that the classical
Newtonian gravitational potential appears as a part of the potential in the
Schrodinger equation, which can explain the gravitational phase effects found
in COW experiments. And because of this Newtonian gravitational potential, a
quantum particle in earth's gravitational field may form a gravitationally
bound quantized state, which had already been detected in experiments. Three
different kinds of phase effects related to gravitational interactions are
discussed in this paper, and these phase effects should be observable in some
astrophysical processes. Besides, there exists direct coupling between
gravitomagnetic field and quantum spin, radiation caused by this coupling can
be used to directly determine the gravitomagnetic field on the surface of a
star.Comment: 12 pages, no figur
On Tamm's problem in the Vavilov-Cherenkov radiation theory
We analyse the well-known Tamm problem treating the charge motion on a finite
space interval with the velocity exceeding light velocity in medium. By
comparing Tamm's formulae with the exact ones we prove that former do not
properly describe Cherenkov radiation terms. We also investigate Tamm's formula
cos(theta)=1/(beta n) defining the position of maximum of the field strengths
Fourier components for the infinite uniform motion of a charge. Numerical
analysis of the Fourier components of field strengths shows that they have a
pronounced maximum at cos(theta)=1/(beta n) only for the charge motion on the
infinitely small interval. As the latter grows, many maxima appear. For the
charge motion on an infinite interval there is infinite number of maxima of the
same amplitude. The quantum analysis of Tamm's formula leads to the same
results.Comment: 28 pages, 8 figures, to be published in J.Phys.D:Appl.Phy
Angular momentum effects in weak gravitational fields
It is shown that, contrary to what is normally expected, it is possible to
have angular momentum effects on the geometry of space time at the laboratory
scale, much bigger than the purely Newtonian effects. This is due to the fact
that the ratio between the angular momentum of a body and its mass, expressed
as a length, is easily greater than the mass itself, again expressed as a
length.Comment: LATEX, 8 page
Forces between electric charges in motion: Rutherford scattering, circular Keplerian orbits, action-at-a-distance and Newton's third law in relativistic classical electrodynamics
Standard formulae of classical electromagnetism for the forces between
electric charges in motion derived from retarded potentials are compared with
those obtained from a recently developed relativistic classical electrodynamic
theory with an instantaneous inter-charge force. Problems discussed include
small angle Rutherford scattering, Jackson's recent `torque paradox' and
circular Keplerian orbits. Results consistent with special relativity are
obtained only with an instantaneous interaction. The impossiblity of stable
circular motion with retarded fields in either classical electromagnetism or
Newtonian gravitation is demonstrated.Comment: 26 pages, 5 figures. QED and special relativity forbid retarded
electromagnetic forces. See also physics/0501130. V2 has typos corrected,
minor text modifications and updated references. V3 has further typos removed
and added text and reference
Rotation of electromagnetic fields and the nature of optical angular momentum
The association of spin and orbital angular momenta of light with its polarization and helical phase fronts is now well established. The problems in linking this with electromagnetic theory, as expressed in Maxwell's equations, are rather less well known. We present a simple analysis of the problems involved in defining spin and orbital angular momenta for electromagnetic fields and discuss some of the remaining challenges. Crucial to our investigation is the duplex symmetry between the electric and magnetic fields
Chaotic and pseudochaotic attractors of perturbed fractional oscillator
We consider a nonlinear oscillator with fractional derivative of the order
alpha. Perturbed by a periodic force, the system exhibits chaotic motion called
fractional chaotic attractor (FCA). The FCA is compared to the ``regular''
chaotic attractor. The properties of the FCA are discussed and the
``pseudochaotic'' case is demonstrated.Comment: 20 pages, 7 figure
Mach's principle: Exact frame-dragging via gravitomagnetism in perturbed Friedmann-Robertson-Walker universes with
We show that the dragging of the axis directions of local inertial frames by
a weighted average of the energy currents in the universe is exact for all
linear perturbations of any Friedmann-Robertson-Walker (FRW) universe with K =
(+1, -1, 0) and of Einstein's static closed universe. This includes FRW
universes which are arbitrarily close to the Milne Universe, which is empty,
and to the de Sitter universe. Hence the postulate formulated by E. Mach about
the physical cause for the time-evolution of the axis directions of inertial
frames is shown to hold in cosmological General Relativity for linear
perturbations. The time-evolution of axis directions of local inertial frames
(relative to given local fiducial axes) is given experimentally by the
precession angular velocity of gyroscopes, which in turn is given by the
operational definition of the gravitomagnetic field. The gravitomagnetic field
is caused by cosmological energy currents via the momentum constraint. This
equation for cosmological gravitomagnetism is analogous to Ampere's law, but it
holds also for time-dependent situtations. In the solution for an open universe
the 1/r^2-force of Ampere is replaced by a Yukawa force which is of identical
form for FRW backgrounds with The scale of the exponential
cutoff is the H-dot radius, where H is the Hubble rate, and dot is the
derivative with respect to cosmic time. Analogous results hold for energy
currents in a closed FRW universe, K = +1, and in Einstein's closed static
universe.Comment: 23 pages, no figures. Final published version. Additional material in
Secs. I.A, I.J, III, V.H. Additional reference
Gravitomagnetism and the Clock Effect
The main theoretical aspects of gravitomagnetism are reviewed. It is shown
that the gravitomagnetic precession of a gyroscope is intimately connected with
the special temporal structure around a rotating mass that is revealed by the
gravitomagnetic clock effect. This remarkable effect, which involves the
difference in the proper periods of a standard clock in prograde and retrograde
circular geodesic orbits around a rotating mass, is discussed in detail. The
implications of this effect for the notion of ``inertial dragging'' in the
general theory of relativity are presented. The theory of the clock effect is
developed within the PPN framework and the possibility of measuring it via
spaceborne clocks is examined.Comment: 27 pages, LaTeX, submitted to Proc. Bad Honnef Meeting on: GYROS,
CLOCKS, AND INTERFEROMETERS: TESTING GENERAL RELATIVITY IN SPACE (22 - 27
August 1999; Bad Honnef, Germany
Stochastic electromagnetic field propagation: measurement and modelling
This paper reviews recent progress in the measurement and modelling of stochastic electromagnetic fields, focusing on propagation approaches based on Wigner functions and the method of moments technique. The respective propagation methods are exemplified by application to measurements of electromagnetic emissions from a stirred, cavity-backed aperture. We discuss early elements of statistical electromagnetics in Heaviside’s papers, driven mainly by an analogy of electromagnetic wave propagation with heat transfer. These ideas include concepts of momentum and directionality in the realm of propagation through confined media with irregular boundaries. We then review and extend concepts using Wigner functions to propagate the statistical properties of electromagnetic fields. We discuss in particular how to include polarization in this formalism leading to a Wigner tensor formulation and a relation to an averaged Poynting vector
- …
