419 research outputs found

    Physical education as Olympic education

    Get PDF
    Introduction In a recent paper (Parry, 1998, p. 64), I argued that the justification of PE activities lies in their capacity to facilitate the development of certain human excellences of a valued kind. Of course, the problem now lies in specifying those ‘human excellences of a valued kind’, and (for anyone) this task leads us into the area of philosophical anthropology. I suggested that the way forward for Physical Education lies in the philosophical anthropology (and the ethical ideals) of Olympism, which provide a specification of a variety of human values and excellences which: •have been attractive to human groups over an impressive span of time and space •have contributed massively to our historically developed conceptions of ourselves •have helped to develop a range of artistic and cultural conceptions that have defined Western culture. •have produced a range of physical activities that have been found universally satisfying and challenging. Although physical activities are widely considered to be pleasurable, their likelihood of gaining wide acceptance lies rather in their intrinsic value, which transcends the simply hedonic or relative good. Their ability to furnish us with pleasurable experiences depends upon our prior recognition in them of opportunities for the development and expression of valued human excellences. They are widely considered to be such opportunities for the expression of valued human excellences because, even when as local instantiations, their object is to challenge our common human propensities and abilities. I claimed that Olympic ideals may be seen not merely as inert ‘ideals’, but living ideas which have the power to remake our notions of sport in education, seeing sport not as mere physical activity but as the cultural and developmental activity of an aspiring, achieving, well-balanced, educated and ethical individual. This paper seeks to make good that claim by trying to develop a case for Physical Education as Olympic Education. I begin by setting out various accounts and conceptions of the Olympic Idea; then I suggest a unifying and organising account of the philosophical anthropology of Olympism; and this is followed by the practical application of that account in two examples of current ethical issues. Finally, I seek to present an account of Physical Education as Olympic Education

    Irreversibility and Polymer Adsorption

    Full text link
    Physisorption or chemisorption from dilute polymer solutions often entails irreversible polymer-surface bonding. We present a theory of the non-equilibrium layers which result. While the density profile and loop distribution are the same as for equilibrium layers, the final layer comprises a tightly bound inner part plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f) ~ f^{-4/5}, in rather close agreement with strong physisorption experiments [H. M. Schneider et al, Langmuir v.12, p.994 (1996)].Comment: 4 pages, submitted to Phys. Rev. Let

    A Quasi-Classical Model of Intermediate Velocity Particle Production in Asymmetric Heavy Ion Reactions

    Full text link
    The particle emission at intermediate velocities in mass asymmetric reactions is studied within the framework of classical molecular dynamics. Two reactions in the Fermi energy domain were modelized, 58^{58}Ni+C and 58^{58}Ni+Au at 34.5 MeV/nucleon. The availability of microscopic correlations at all times allowed a detailed study of the fragment formation process. Special attention was paid to the physical origin of fragments and emission timescales, which allowed us to disentangle the different processes involved in the mid-rapidity particle production. Consequently, a clear distinction between a prompt pre- equilibrium emission and a delayed aligned asymmetric breakup of the heavier partner of the reaction was achieved.Comment: 8 pages, 7 figures. Final version: figures were redesigned, and a new section discussing the role of Coulomb in IMF production was include

    Searching for the Nuclear Liquid-Gas Phase Transition in Au + Au Collisions at 35 MeV/nucleon

    Get PDF
    Within the framework of Classical Molecular Dynamics, we study the collision Au + Au at an incident energy of 35 MeV/nucleon. It is found that the system shows a critical behaviour at peripheral impact parameters, revealed through the analysis of conditional moments of charge distributions, Campi Scatter Plot, and the occurrence of large fluctuations in the region of the Campi plot where this critical behaviour is expected. When applying the experimental filters of the MULTICS-MINIBALL apparatus, it is found that criticality signals can be hidden due to the inefficiency of the experimental apparatus. The signals are then recovered by identifying semi-peripheral and peripheral collisions looking to the velocity distribution of the largest fragment, then by selecting the most complete events.Comment: RevTex file, 21 pages + 19 figures available upon request from [email protected]

    Effects of Compression and Collective Expansion on Particle Emission from Central Heavy-Ion Reactions

    Full text link
    Conditions under which compression occurs and collective expansion develops in energetic reactions of heavy nuclei, are analyzed, together with their effects on emitted light baryons and pions. Within transport simulations, it is shown that shock fronts perpendicular to beam axis form in head-on reactions. The fronts separate hot compressed matter from normal. As impact parameter increases, the angle of inclination of the fronts relative to beam axis decreases, and in-between the fronts a weak tangential discontinuity develops. Hot matter exposed to the vacuum in directions perpendicular to shock motion (and parallel to fronts), starts to expand sideways, early within reactions. Expansion in the direction of shock motion follows after the shocks propagate through nuclei, but due to the delay does not acquire same strength. Expansion affects angular distributions, mean-energy components, shapes of spectra and mean energies of different particles emitted into any one direction, and further particle yields. Both the expansion and a collective motion associated with the weak discontinuity, affect the magnitude of sideward flow within reaction plane. Differences in mean particle energy components in and out of the reaction plane in semicentral collisions, depend sensitively on the relative magnitude of shock speed in normal matter and speed of sound in hot matter.Comment: 71 pages, 33 figures (available on request), report MSUCL-94

    Statistical nature of cluster emission in nuclear liquid-vapour phase coexistence

    Full text link
    The emission of nuclear clusters is investigated within the framework of isospin dependent lattice gas model and classical molecular dynamics model. It is found that the emission of individual cluster which is heavier than proton is almost Poissonian except near the transition temperature at which the system is leaving the liquid-vapor phase coexistence and the thermal scaling is observed by the linear Arrhenius plots which is made from the average multiplicity of each cluster versus the inverse of temperature in the liquid vapor phase coexistence. The slopes of the Arrhenius plots, {\it i.e.} the "emission barriers", are extracted as a function of the mass or charge number and fitted by the formula embodied with the contributions of the surface energy and Coulomb interaction. The good agreements are obtained in comparison with the data for low energy conditional barriers. In addition, the possible influences of the source size, Coulomb interaction and "freeze-out" density and related physical implications are discussed

    Spin Caloritronics

    Get PDF
    This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura, Oxford University Pres

    Observed Ionospheric Effects of 23 October 2011 Van, Turkey Earthquake

    Get PDF
    On 23 October 2011, a very strong earthquake with a magnitude of Mw = 7.2 shook Eastern Anatolia, and tremors were felt up to 500 km from the epicentre. In this study, we present an early analysis of ionospheric disturbance due to this earthquake using Global Positioning Satellite-Total Electron Content (GPS-TEC). The variability with respect to average quiet day TEC (AQDT) and variability between the consecutive days are measured with symmetric Kullback-Leibler divergence (SKLD). A significant variability in total electron content (TEC) is observed from the GPS stations in the 150 km neighbourhood of the epicentre eight and nine days prior to the earthquake. An ionospheric disturbance is observed from GPS stations even more than 1,000 km to the epicentre, especially those on the North Anatolian fault (NAF). The present results support the existence of lithosphere-atmosphere-ionosphere coupling (LAIC) associated with Van, Turkey earthquake. © 2012 Taylor and Francis Group, LLC
    corecore