7 research outputs found
Orbital resonances in discs around braneworld Kerr black holes
Rotating black holes in the brany universe of the Randall-Sundrum type are
described by the Kerr geometry with a tidal charge b representing the
interaction of the brany black hole and the bulk spacetime. For b<0 rotating
black holes with dimensionless spin a>1 are allowed. We investigate the role of
the tidal charge b in the orbital resonance model of QPOs in black hole
systems. The orbital Keplerian, the radial and vertical epicyclic frequencies
of the equatorial, quasicircular geodetical motion are given and their radial
profiles are discussed. The resonant conditions are given in three
astrophysically relevant situations: for direct (parametric) resonances, for
the relativistic precession model, and for some trapped oscillations of the
warped discs, with resonant combinational frequencies. It is shown, how b could
influence matching of the observational data indicating the 3:2 frequency ratio
observed in GRS 1915+105 microquasar with prediction of the orbital resonance
model; limits on allowed range of the black hole parameters a and b are
established. The "magic" dimensionless black hole spin enabling presence of
strong resonant phenomena at the radius where \nu_K:\nu_{\theta}:\nu_r=3:2:1 is
determined in dependence on b. Such strong resonances could be relevant even in
sources with highly scattered resonant frequencies, as those expected in Sgr
A*. The specific values of a and b are given also for existence of specific
radius where \nu_K:\nu_{\theta}:\nu_r=s:t:u with 5>=s>t>u being small natural
numbers. It is shown that for some ratios such situation is impossible in the
field of black holes. We can conclude that analysing the microquasars
high-frequency QPOs in the framework of orbital resonance models, we can put
relevant limits on the tidal charge of brany Kerr black holes.Comment: 31 pages, 19 figures, to appear in General Relativity and Gravitatio
Cosmological Applications of Gravitational Lensing
The last decade has seen an enormous increase of activity in the field of
gravitational lensing, mainly driven by improvements of observational
capabilities. I will review the basics of gravitational lens theory, just
enough to understand the rest of this contribution, and will then concentrate
on several of the main applications in cosmology. Cluster lensing, and weak
lensing, will constitute the main part of this review.Comment: 26 pages, including 2 figures (a third figure can be obtained from
the author by request) gziped and uuencoded postscript file; to be published
in Proceedings of the Laredo Advanced Summer School, Sept. 9
The Physics of Star Cluster Formation and Evolution
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe
