9 research outputs found

    A 4D Light-Field Dataset and CNN Architectures for Material Recognition

    Full text link
    We introduce a new light-field dataset of materials, and take advantage of the recent success of deep learning to perform material recognition on the 4D light-field. Our dataset contains 12 material categories, each with 100 images taken with a Lytro Illum, from which we extract about 30,000 patches in total. To the best of our knowledge, this is the first mid-size dataset for light-field images. Our main goal is to investigate whether the additional information in a light-field (such as multiple sub-aperture views and view-dependent reflectance effects) can aid material recognition. Since recognition networks have not been trained on 4D images before, we propose and compare several novel CNN architectures to train on light-field images. In our experiments, the best performing CNN architecture achieves a 7% boost compared with 2D image classification (70% to 77%). These results constitute important baselines that can spur further research in the use of CNNs for light-field applications. Upon publication, our dataset also enables other novel applications of light-fields, including object detection, image segmentation and view interpolation.Comment: European Conference on Computer Vision (ECCV) 201

    A Clinical Perspective on the Automated Analysis of Reflectance Confocal Microscopy in Dermatology

    No full text
    Background and objectivesNon-invasive optical imaging has the potential to provide a diagnosis without the need for biopsy. One such technology is reflectance confocal microscopy (RCM), which uses low power, near-infrared laser light to enable real-time in vivo visualization of superficial human skin from the epidermis down to the papillary dermis. Although RCM has great potential as a diagnostic tool, there is a need for the development of reliable image analysis programs, as acquired grayscale images can be difficult and time-consuming to visually assess. The purpose of this review is to provide a clinical perspective on the current state of artificial intelligence (AI) for the analysis and diagnostic utility of RCM imaging.Study design/materials and methodsA systematic PubMed search was conducted with additional relevant literature obtained from reference lists.ResultsAlgorithms used for skin stratification, classification of pigmented lesions, and the quantification of photoaging were reviewed. Image segmentation, statistical methods, and machine learning techniques are among the most common methods used to analyze RCM image stacks. The poor visual contrast within RCM images and difficulty navigating image stacks were mediated by machine learning algorithms, which allowed the identification of specific skin layers.ConclusionsAI analysis of RCM images has the potential to increase the clinical utility of this emerging technology. A number of different techniques have been utilized but further refinements are necessary to allow consistent accurate assessments for diagnosis. The automated detection of skin cancers requires more development, but future applications are truly boundless, and it is compelling to envision the role that AI will have in the practice of dermatology. Lasers Surg. Med. © 2020 Wiley Periodicals LLC
    corecore