3,912 research outputs found
Alterations in vascular function in primary aldosteronism - a cardiovascular magnetic resonance imaging study
Introduction: Excess aldosterone is associated with increased cardiovascular risk. Aldosterone has a permissive effect on vascular fibrosis. Cardiovascular magnetic resonance imaging (CMR) allows study of vascular function by measuring aortic distensibility. We compared aortic distensibility in primary aldosteronism (PA), essential hypertension (EH) and normal controls and explored the relationship between aortic distensibility and pulse wave velocity (PWV).<p></p>
Methods: We studied PA (n=14) and EH (n=33) subjects and age-matched healthy controls (n=17) with CMR, including measurement of aortic distensibility, and measured PWV using applanation tonometry. At recruitment, PA and EH patients had similar blood pressure and left ventricular mass.<p></p>
Results: Subjects with PA had significantly lower aortic distensibilty and higher PWV compared to EH and healthy controls. These changes were independent of other factors associated with reduced aortic distensibility, including aging. There was a significant relationship between increasing aortic stiffness and age in keeping with physical and vascular aging. As expected, aortic distensibility and PWV were closely correlated.<p></p>
Conclusion: These results demonstrate that PA patients display increased arterial stiffness compared to EH, independent of vascular aging. The implication is that aldosterone invokes functional impairment of arterial function. The long-term implications of arterial stiffening in aldosterone excess require further study.<p></p>
Development and User Satisfaction of “Plan-It Commander,” a Serious Game for Children with ADHD
The need for engaging treatment approaches within mental health care has led to the application of gaming approaches to existing behavioral training programs (i.e., gamification). Because children with attention deficit/hyperactivity disorder (ADHD) tend to have fewer problems with concentration and engagement when playing digital games, applying game technologies and design approaches to complement treatment may be a useful means to engage this population in their treatment. Unfortunately, gamified training programs currently available for ADHD have been limited in their ability to demonstrate in-game behavior skills that generalize to daily life situations. Therefore, we developed a new serious game (called “Plan-It Commander”) that was specifically designed to promote behavioral learning and promotes strategy use in domains of daily life functioning such as time management, planning/organizing, and prosocial skills that are known to be problematic for children with ADHD. An interdisciplinary team contributed to the development of the game. The game's content and approach are based on psychological principles from the Self-Regulation Model, Social Cognitive Theory, and Learning Theory. In this article, game development and the scientific background of the behavioral approach are described, as well as results of a survey (n = 42) to gather user feedback on the first prototype of the game. The findings suggest that participants were satisfied with this game and provided the basis for further development and research to the game. Implications for developing serious games and applying user feedback in game development are discussed
Reversible hydration of CH(3)NH(3)Pbl(3) in films, single crystals, and solar cells
Solar cells composed of methylammonium lead iodide perovskite (MAPI) are notorious for their sensitivity to moisture. We show that (i) hydrated crystal phases are formed when MAPI is exposed to water vapor at room temperature and (ii) these phase changes are fully reversed when the material is subsequently dried. The reversible formation of CH3NH3PbI3·H2O followed by (CH3NH3)4PbI6·2H2O (upon long exposure times) was observed using time-resolved XRD and ellipsometry of thin films prepared using “solvent engineering”, single crystals, and state-of-the-art solar cells. In contrast to water vapor, the presence of liquid water results in the irreversible decomposition of MAPI to form PbI2. MAPI changes from dark brown to transparent on hydration; the precise optical constants of CH3NH3PbI3·H2O formed on single crystals were determined, with a bandgap at 3.1 eV. Using the single-crystal optical constants and thin-film ellipsometry measurements, the time-dependent changes to MAPI films exposed to moisture were modeled. The results suggest that the monohydrate phase forms independent of the depth in the film, suggesting rapid transport of water molecules along grain boundaries. Vapor-phase hydration of an unencapsulated solar cell (initially Jsc ≈ 19 mA cm–2 and Voc ≈ 1.05 V at 1 sun) resulted in more than a 90% drop in short-circuit photocurrent and ∼200 mV loss in open-circuit potential; however, these losses were fully reversed after the device was exposed to dry nitrogen for 6 h. Hysteresis in the current–voltage characteristics was significantly increased after this dehydration, which may be related to changes in the defect density and morphology of MAPI following recrystallization from the hydrate. Based on our observations, we suggest that irreversible decomposition of MAPI in the presence of water vapor only occurs significantly once a grain has been fully converted to the monohydrate phase
An off-board quantum point contact as a sensitive detector of cantilever motion
Recent advances in the fabrication of microelectromechanical systems (MEMS)
and their evolution into nanoelectromechanical systems (NEMS) have allowed
researchers to measure extremely small forces, masses, and displacements. In
particular, researchers have developed position transducers with resolution
approaching the uncertainty limit set by quantum mechanics. The achievement of
such resolution has implications not only for the detection of quantum behavior
in mechanical systems, but also for a variety of other precision experiments
including the bounding of deviations from Newtonian gravity at short distances
and the measurement of single spins. Here we demonstrate the use of a quantum
point contact (QPC) as a sensitive displacement detector capable of sensing the
low-temperature thermal motion of a nearby micromechanical cantilever.
Advantages of this approach include versatility due to its off-board design,
compatibility with nanoscale oscillators, and, with further development, the
potential to achieve quantum limited displacement detection.Comment: 5 pages, 5 figure
Recognition of Face Identity and Emotion in Expressive Specific Language Impairment
Objective: To study face and emotion recognition in children with mostly expressive specific language impairment (SLI-E). Subjects and Methods: A test movie to study perception and recognition of faces and mimic-gestural expression was applied to 24 children diagnosed as suffering from SLI-E and an age-matched control group of normally developing children. Results: Compared to a normal control group, the SLI-E children scored significantly worse in both the face and expression recognition tasks with a preponderant effect on emotion recognition. The performance of the SLI-E group could not be explained by reduced attention during the test session. Conclusion: We conclude that SLI-E is associated with a deficiency in decoding non-verbal emotional facial and gestural information, which might lead to profound and persistent problems in social interaction and development. Copyright (C) 2012 S. Karger AG, Base
Kerr/CFT, dipole theories and nonrelativistic CFTs
We study solutions of type IIB supergravity which are SL(2,R) x SU(2) x
U(1)^2 invariant deformations of AdS_3 x S^3 x K3 and take the form of products
of self-dual spacelike warped AdS_3 and a deformed three-sphere. One of these
backgrounds has been recently argued to be relevant for a derivation of
Kerr/CFT from string theory, whereas the remaining ones are holographic duals
of two-dimensional dipole theories and their S-duals. We show that each of
these backgrounds is holographically dual to a deformation of the DLCQ of the
D1-D5 CFT by a specific supersymmetric (1,2) operator, which we write down
explicitly in terms of twist operators at the free orbifold point. The
deforming operator is argued to be exactly marginal with respect to the
zero-dimensional nonrelativistic conformal (or Schroedinger) group - which is
simply SL(2,R)_L x U(1)_R. Moreover, in the supergravity limit of large N and
strong coupling, no other single-trace operators are turned on. We thus propose
that the field theory duals to the backgrounds of interest are nonrelativistic
CFTs defined by adding the single Schroedinger-invariant (1,2) operator
mentioned above to the original CFT action. Our analysis indicates that the
rotating extremal black holes we study are best thought of as finite
right-moving temperature (non-supersymmetric) states in the above-defined
supersymmetric nonrelativistic CFT and hints towards a more general connection
between Kerr/CFT and two-dimensional non-relativistic CFTs.Comment: 48+8 pages, 4 figures; minor corrections and references adde
Entanglement entropy of Wilson surfaces from bubbling geometries in M-theory
We consider solutions of eleven-dimensional supergravity constructed in [1,2]
that are half-BPS, locally asymptotic to and are the
holographic dual of heavy Wilson surfaces in the six-dimensional
theory. Using these bubbling solutions we calculate the holographic
entanglement entropy for a spherical entangling surface in the presence of a
planar Wilson surface. In addition, we calculate the holographic stress tensor
and, by evaluating the on-shell supergravity action, the expectation value of
the Wilson surface operator.Comment: 42 pages, 4 figures, v2: minor modification
Variant of TYR and Autoimmunity Susceptibility Loci in Generalized Vitiligo.
BACKGROUND
Generalized vitiligo is an autoimmune disease characterized by melanocyte loss, which results in patchy depigmentation of skin and hair, and is associated with an elevated risk of other autoimmune diseases.
METHODS
To identify generalized vitiligo susceptibility loci, we conducted a genomewide association study. We genotyped 579,146 single-nucleotide polymorphisms (SNPs) in 1514 patients with generalized vitiligo who were of European-derived white (CEU) ancestry and compared the genotypes with publicly available control genotypes from 2813 CEU persons. We then tested 50 SNPs in two replication sets, one comprising 677 independent CEU patients and 1106 CEU controls and the other comprising 183 CEU simplex trios with generalized vitiligo and 332 CEU multiplex families.
RESULTS
We detected significant associations between generalized vitiligo and SNPs at several loci previously associated with other autoimmune diseases. These included genes encoding major-histocompatibility-complex class I molecules (P=9.05×10−23) and class II molecules (P=4.50×10−34), PTPN22 (P=1.31×10−7), LPP (P=1.01×10−11), IL2RA (P=2.78×10−9), UBASH3A (P=1.26×10−9), and C1QTNF6 (P=2.21×10−16). We also detected associations between generalized vitiligo and SNPs in two additional immune-related loci, RERE (P=7.07×10−15) and GZMB (P=3.44×10−8), and in a locus containing TYR (P=1.60×10−18), encoding tyrosinase.
CONCLUSIONS
We observed associations between generalized vitiligo and markers implicating multiple genes, some associated with other autoimmune diseases and one (TYR) that may mediate target-cell specificity and indicate a mutually exclusive relationship between susceptibility to vitiligo and susceptibility to melanoma
Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment
BACKGROUND: Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. METHODS: We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. RESULTS: Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1) probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. CONCLUSIONS: Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss
- …
