5,299 research outputs found

    N=2 Supermultiplet of Currents and Anomalous Transformations in Supersymmetric Gauge Theory

    Get PDF
    We examine some properties of supermultiplet consisting of the U(1)_{J} current, extended supercurrents, energy-momentum tensor and the central charge in N=2 supersymmetric Yang-Mills theory. The superconformal improvement requires adding another supermultiplet beginning with the U(1)_{R} current. We determine the anomalous (quantum mechanical) supersymmetry transformation associated with the central charge and the energy-momentum tensor to one-loop order.Comment: 8 pages, LaTe

    The Evolution of Li6 in Standard Cosmic-Ray Nucleosynthesis

    Full text link
    We review the Galactic chemical evolution of Li6 and compare these results with recent observational determinations of the lithium isotopic ratio. In particular, we concentrate on so-called standard Galactic cosmic-ray nucleosynthesis in which Li, Be, and B are produced (predominantly) by the inelastic scattering of accelerated protons and \alpha's off of CNO nuclei in the ambient interstellar medium. If O/Fe is constant at low metallicities, then the Li6 vs Fe/H evolution-as well as Be and B vs Fe/H-has difficulty in matching the observations. However, recent determinations of Population II oxygen abundances, as measured via OH lines, indicate that O/Fe increases at lower metallicity; if this trend is confirmed, then the Li6 evolution in a standard model of cosmic-ray nucleosynthesis is consistent with the data. We also show that another key indicator of Li6BeB origin is the Li6/Be ratio which also fits the available data if O/Fe is not constant at low metallicity. Finally we note that Li6 evolution in this scenario can strongly constrain the degree to which Li6 and Li7 are depleted in halo stars.Comment: 15 pages, latex, 2 ps figure

    Cosmic Chemical Evolution with an Early Population of Intermediate Mass Stars

    Full text link
    We explore the consequences of an early population of intermediate mass stars in the 2 - 8 M\odot range on cosmic chemical evolution. We discuss the implications of this population as it pertains to several cosmological and astrophysical observables. For example, some very metal-poor galactic stars show large enhancements of carbon, typical of the C-rich ejecta of low-mass stars but not of supernovae; moreover, halo star carbon and oxygen abundances show wide scatter, which imply a wide range of star-formation and nucleosynthetic histories contributed to the first generations of stars. Also, recent analyses of the 4He abundance in metal-poor extragalactic H II regions suggest an elevated abundance Yp \simeq 0.256 by mass, higher than the predicted result from big bang nucleosynthesis assuming the baryon density determined by WMAP, Yp = 0.249. Although there are large uncertainties in the observational determination of 4He, this offset may suggest a prompt initial enrichment of 4He in early metal-poor structures. We also discuss the effect of intermediate mass stars on global cosmic evolution, the reionization of the Universe, the density of white dwarfs, as well as SNII and SNIa rates at high redshift. We also comment on the early astration of D and 7Li. We conclude that if intermediate mass stars are to be associated with Population III stars, their relevance is limited (primarily from observed abundance patterns) to low mass structures involving a limited fraction of the total baryon content of the Universe.Comment: Submitted to MNRA

    What if the Higgs Boson Weighs 115 GeV?

    Get PDF
    If the Higgs boson indeed weighs about 114 to 115 GeV, there must be new physics beyond the Standard Model at some scale \la 10^6 GeV. The most plausible new physics is supersymmetry, which predicts a Higgs boson weighing \la 130 GeV. In the CMSSM with R and CP conservation, the existence, production and detection of a 114 or 115 GeV Higgs boson is possible if \tan\beta \ga 3. However, for the radiatively-corrected Higgs mass to be this large, sparticles should be relatively heavy: m_{1/2} \ga 250 GeV, probably not detectable at the Tevatron collider and perhaps not at a low-energy e^+ e^- linear collider. In much of the remaining CMSSM parameter space, neutralino-stau coannihilation is important for calculating the relic neutralino density, and we explore implications for the elastic neutralino-nucleon scattering cross section.Comment: 17 pages, 5 eps figure
    corecore