5,389 research outputs found
The effects of Si-doped prelayers on the optical properties of InGaN/GaN single quantum well structures
In this paper, we report on the effects of including Si-doped (In)GaN prelayers on the low temperature optical properties of a blue-light emitting InGaN/GaN single quantum well. We observed a large blue shift of the photoluminescence peak emission energy and significant increases in the radiative recombination rate for the quantum well structures that incorporated Si-doped prelayers. Simulations of the variation of the conduction and valence band energies show that a strong modification of the band profile occurs for the quantum wells on Si-doped prelayers due to an increase in strength of the surface polarization field. The enhanced surface polarization field opposes the built-in field across the quantum well and thus reduces this built-in electric field. This reduction of the electric field across the quantum well reduces the Quantum Confined Stark Effect and is responsible for the observed blue shift and the change in the recombination dynamics.This work was carried out with the financial support of
the United Kingdom Engineering and Physical Sciences
Research Council under Grant Nos. EP/I012591/1 and EP/
H011676/1.This is the accepted manuscript version of the article. The final version is available from AIP at http://scitation.aip.org/content/aip/journal/apl/105/9/10.1063/1.4894834
A comparison of the optical properties of InGaN/GaN multiple quantum well structures grown with and without Si-doped InGaN prelayers
In this paper, we report on a detailed spectroscopic study of the optical properties of InGaN/GaN multiple quantum well structures, both with and without a Si-doped InGaN prelayer. In photoluminescence and photoluminescence excitation spectroscopy, a 2nd emission band, occurring at a higher energy, was identified in the spectrum of the multiple quantum well structure containing the InGaN prelayer, originating from the first quantum well in the stack. Band structure calculations revealed that a reduction in the resultant electric field occurred in the quantum well immediately adjacent to the InGaN prelayer, therefore leading to a reduction in the strength of the quantum confined Stark effect in this quantum well. The partial suppression of the quantum confined Stark effect in this quantum well led to a modified (higher) emission energy and increased radiative recombination rate. Therefore, we ascribed the origin of the high energy emission band to recombination from the 1st quantum well in the structure. Study of the temperature dependent recombination dynamics of both samples showed that the decay time measured across the spectrum was strongly influenced by the 1st quantum well in the stack (in the sample containing the prelayer) leading to a shorter average room temperature lifetime in this sample. The room temperature internal quantum efficiency of the prelayer containing sample was found to be higher than the reference sample (36% compared to 25%) which was thus attributed to the faster radiative recombination rate of the 1st quantum well providing a recombination pathway that is more competitive with non-radiative recombination processes.This work was carried out with the financial support of the United Kingdom Engineering and Physical Sciences Research Council under Grant Nos. EP/I012591/1 and EP/ H011676/1.This is the final version of the article. It first appeared from AIP Publishing via http://dx.doi.org/10.1063/1.494132
Recommended from our members
The ABC model of recombination reinterpreted: Impact on understanding carrier transport and efficiency droop in InGaN/GaN light emitting diodes
The efficiency of light emitting diodes remains a topic of great contemporary interest due to their potential to reduce the amount of energy consumed in lighting. The current consensus is that electrons and holes distribute themselves through the emissive region by a drift-diffusion process which results in a highly non-uniform distribution of the light emission and can reduce efficiency. In this paper the measured variations in external quantum efficiency of a range of InGaN/GaN LEDs with different numbers of quantum wells are shown to compare closely with the predictions of a revised ABC model in which it is assumed that the electrically injected electrons and holes are uniformly distributed through the multi-quantum well region, or nearly so, and hence carrier recombination occurs equally in all the quantum wells. The implications of the reported results are that drift-diffusion plays a far lesser role in
cross-well carrier transport than previously thought; that the dominant cause of efficiency droop is intrinsic to the quantum wells and that reductions in the density of non-radiative recombination centers in the MQW would enable the use of more QWs and thereby reduce Auger losses by spreading carriers more evenly across a wider emissive region
Microstructural dependency of optical properties of m -plane InGaN multiple quantum wells grown on 2° misoriented bulk GaN substrates
A non-polar m-plane structure consisting of five InGaN/GaN quantum wells (QWs) was grown on ammonothermal bulk GaN by metal-organic vapor phase epitaxy. Surface step bunches propagating through the QW stack were found to accommodate the 2° substrate miscut towards the -c direction. Both large steps with heights of a few tens of nanometres and small steps between one and a few atomic layers in height are observed, the former of which exhibit cathodoluminescence at longer wavelengths than the adjacent m-plane terraces. This is attributed to the formation of semi-polar facets at the steps on which the QWs are shown to be thicker and have higher Indium contents than those in the adjacent m-plane regions. Discrete basal-plane stacking faults (BSFs) were occasionally initiated from the QWs on the main m-plane terraces, but groups of BSFs were frequently observed to initiate from those on the large steps, probably related to the increased strain associated with the locally higher indium content and thickness.This project is funded by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 279361 (MACONS) and in part by the EPSRC (Grant Nos. EP/H047816/1 and EP/J001627/1).This is the author accepted manuscript. The final version is available from AIP via http://dx.doi.org/10.1063/1.492872
Effect of electron blocking layers on the conduction and valence band profiles of InGaN/GaN LEDs
In this paper we investigate the effect of including an electron blocking layer between the quantum well active region and the p-type layers of a light emitting diode has on the conduction and valence band profile of a light emitting diode. Two light emitting diode structures with nominally identical quantum well active regions one containing an electron blocking layer and one without were grown for the purposes of this investigation. The conduction and valence band profiles for both structures were then calculated using a commercially available Schrödinger-Poisson calculator, and a modification to the electric field across the QWs observed. The results of these calculations were then compared to photoluminescence and photoluminescence time decay measurements. The modification in electric field across the quantum wells of the structures resulted in slower radiative recombination in the sample containing an electron blocking layers. The sample containing an electron blocking layer was also found to exhibit a lower internal quantum efficiency, which we attribute to the observed slower radiative recombination lifetime making radiative recombination less competitive.This work was carried out with the financial support of the United Kingdom Engineering and Physical Sciences Research Council under Grant Nos. EP/I012591/1 and EP/H011676/1.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/pssc.20151018
Effect of QW growth temperature on the optical properties of blue and green InGaN/GaN QW structures
In this paper we report on the impact that the quantum well growth temperature has on the internal quantum efficiency and carrier recombination dynamics of two sets of InGaN/GaN multiple quantum well samples, designed to emit at 460 and 530 nm, in which the indium content of the quantum wells within each sample set was maintained. Measurements of the internal quantum efficiency of each sample set showed a systematic variation, with quantum wells grown at a higher temperature exhibiting higher internal quantum efficiency and this variation was preserved at all excitation power densities. By investigating the carrier dynamics at both 10 K and 300 K we were able to attribute this change in internal quantum efficiency to a decrease in the non-radiative recombination rate as the QW growth temperature was increased which we attribute to a decrease in incorporation of the point defects.This work was carried out with the financial support of the United Kingdom Engineering and Physical Sciences Research Council under Grant Nos. EP/I012591/1 and EP/H011676/1.This is the final version of the article. It first appeared from Wiley via https://doi.org/10.1002/pssc.20151018
Analysis of defect-related inhomogeneous electroluminescence in InGaN/GaN QW LEDs
The inhomogeneous electroluminescence (EL) of InGaN/GaN quantum well light emitting diode structures was investigated in this study. Electroluminescence hyperspectral images showed that inhomogeneities in the form of bright spots exhibited spectrally blue-shifted and broadened emission. Scanning electron microscopy combined with cathodoluminescence (SEM-CL) was used to identify hexagonal pits at the centre of approximately 20% of these features. Scanning transmission electron microscopy imaging with energy dispersive X-ray spectroscopy (STEM-EDX) indicated there may be p-doped AlGaN within the active region caused by the presence of the pit. Weak beam dark-field TEM (WBDF-TEM) revealed the presence of bundles of dislocations associated with the pit, suggesting the surface features which cause the inhomogeneous EL may occur at coalescence boundaries, supported by trends in the number of features observed across the wafer.The European Research Council has provided financial support under the European Community’s Seventh Framework Programme/ ERC grant agreement no. 279361 (MACONS).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.spmi.2016.03.03
Multiplex quantitative PCR for single-reaction genetically modified (GM) plant detection and identification of false-positive GM plants linked to Cauliflower mosaic virus (CaMV) infection.
BACKGROUND:Most genetically modified (GM) plants contain a promoter, P35S, from the plant virus, Cauliflower mosaic virus (CaMV), and many have a terminator, TNOS, derived from the bacterium, Agrobacterium tumefaciens. Assays designed to detect GM plants often target the P35S and/or TNOS DNA sequences. However, because the P35S promoter is derived from CaMV, these detection assays can yield false-positives from non-GM plants infected by this naturally-occurring virus. RESULTS:Here we report the development of an assay designed to distinguish CaMV-infected plants from GM plants in a single multiplexed quantitative PCR (qPCR) reaction. Following initial testing and optimization via PCR and singleplex-to-multiplex qPCR on both plasmid and plant DNA, TaqMan qPCR probes with different fluorescence wavelengths were designed to target actin (a positive-control plant gene), P35S, P3 (a CaMV-specific gene), and TNOS. We tested the specificity of our quadruplex qPCR assay using different DNA extracts from organic watercress and both organic and GM canola, all with and without CaMV infection, and by using commercial and industrial samples. The limit of detection (LOD) of each target was determined to be 1% for actin, 0.001% for P35S, and 0.01% for both P3 and TNOS. CONCLUSIONS:This assay was able to distinguish CaMV-infected plants from GM plants in a single multiplexed qPCR reaction for all samples tested in this study, suggesting that this protocol is broadly applicable and readily transferrable to any interested parties with a qPCR platform
Color changes upon cooling of Lepidoptera scales containing photonic nanoarchitectures, and a method for identifying the changes
The effects produced by the condensation of water vapor from the environment in the various intricate
nanoarchitectures occurring in the wing scales of several Lepidoptera species were
investigated by controlled cooling (from 23° C, room temperature to -5 to -10° C) combined with
in situ measurements of changes in the reflectance spectra. It was determined that all photonic
nanoarchitectures giving a reflectance maximum in the visible range and having an open
nanostructure exhibited alteration of the position of the reflectance maximum associated with the
photonic nanoarchitectures. The photonic nanoarchitectures with a closed structure exhibited little
to no alteration in color. Similarly, control specimens colored by pigments did not exhibit a
color change under the same conditions. Hence, this method can be used to identify species with
open photonic nanoarchitectures in their scales. For certain species, an almost complete disappearance
of the reflectance maximum was found. All specimens recovered their original colors
following warming and drying. Cooling experiments using thin copper wires demonstrated that
color alterations could be limited to a width of a millimeter or less. Dried museum specimens did
not exhibit color changes when cooled in the absence of a heat sink due to the low heat capacity
of the wings
- …
