45,960 research outputs found
Decaying grid turbulence in a rotating stratified fluid
Rotating grid turbulence experiments have been carried out in a stably stratified fluid for relatively large Reynolds numbers (mesh Reynolds numbers up to 18000). Under the combined effects of rotation and stratification the flow degenerates into quasihorizontal motions. This regime is investigated using a scanning imaging velocimetry technique which provides time-resolved velocity fields in a volume. The most obvious effect of rotation is the inhibition of the kinetic energy decay, in agreement with the quasi-geostrophic model which predicts the absence of a direct energy cascade, as found in two-dimensional turbulence. In the regime of small Froude and Rossby numbers, the dynamics is found to be non-dissipative and associated with a symmetric and highly intermittent vertical vorticity field, that displays k(h)(-3) energy spectra. For higher Rossby numbers, fundamental differences with the quasi-geostrophic model are found. A significant decay of kinetic energy, which does not depend on the stratification, is observed. Moreover, in this regime, although both cyclones and anticyclones are initially produced, the intense vortices are only cyclones. For late times the flow consists of an assembly of coherent interacting Structures. Under the influence of both rotation and stratification, they take the form of lens-like eddies with aspect ratio proportional to f/N
The dog that did not bark: Insider trading and crashes
This paper documents that at the individual stock level insiders sales peak many months before a large drop in the stock price, while insiders purchases peak only the month before a large jump. We provide a theoretical explanation for this phenomenon based on trading constraints and asymmetric information. We test our hypothesis against competing stories such as patterns of insider trading driven by earnings announcement dates, or insiders timing their trades to evade prosecution. Finally we provide new evidence regarding crashes and the degree of information asymmetry.Insider Trading, Rational Expectations Equilibrium, Trading Constraints, Volatility, Crashes
Numerical computation of the conformal map onto lemniscatic domains
We present a numerical method for the computation of the conformal map from
unbounded multiply-connected domains onto lemniscatic domains. For -times
connected domains the method requires solving boundary integral
equations with the Neumann kernel. This can be done in
operations, where is the number of nodes in the discretization of each
boundary component of the multiply connected domain. As demonstrated by
numerical examples, the method works for domains with close-to-touching
boundaries, non-convex boundaries, piecewise smooth boundaries, and for domains
of high connectivity.Comment: Minor revision; simplified Example 6.1, and changed Example 6.2 to a
set without symmetr
Towards efficient decoding of classical-quantum polar codes
Known strategies for sending bits at the capacity rate over a general channel
with classical input and quantum output (a cq channel) require the decoder to
implement impractically complicated collective measurements. Here, we show that
a fully collective strategy is not necessary in order to recover all of the
information bits. In fact, when coding for a large number N uses of a cq
channel W, N I(W_acc) of the bits can be recovered by a non-collective strategy
which amounts to coherent quantum processing of the results of product
measurements, where I(W_acc) is the accessible information of the channel W. In
order to decode the other N (I(W) - I(W_acc)) bits, where I(W) is the Holevo
rate, our conclusion is that the receiver should employ collective
measurements. We also present two other results: 1) collective Fuchs-Caves
measurements (quantum likelihood ratio measurements) can be used at the
receiver to achieve the Holevo rate and 2) we give an explicit form of the
Helstrom measurements used in small-size polar codes. The main approach used to
demonstrate these results is a quantum extension of Arikan's polar codes.Comment: 21 pages, 2 figures, submission to the 8th Conference on the Theory
of Quantum Computation, Communication, and Cryptograph
Role of the medial part of the intraparietal sulcus in implementing movement direction
The contribution of the posterior parietal cortex (PPC) to visually guided movements has been originally inferred from observations made in patients suffering from optic ataxia. Subsequent electrophysiological studies in monkeys and functional imaging data in humans have corroborated the key role played by the PPC in sensorimotor transformations underlying goal-directed movements, although the exact contribution of this structure remains debated. Here, we used transcranial magnetic stimulation (TMS) to interfere transiently with the function of the left or right medial part of the intraparietal sulcus (mIPS) in healthy volunteers performing visually guided movements with the right hand. We found that a "virtual lesion" of either mIPS increased the scattering in initial movement direction (DIR), leading to longer trajectory and prolonged movement time, but only when TMS was delivered 100-160 ms before movement onset and for movements directed toward contralateral targets. Control experiments showed that deficits in DIR consequent to mIPS virtual lesions resulted from an inappropriate implementation of the motor command underlying the forthcoming movement and not from an inaccurate computation of the target localization. The present study indicates that mIPS plays a causal role in implementing specifically the direction vector of visually guided movements toward objects situated in the contralateral hemifield
Is countershading camouflage robust to lighting change due to weather?
Countershading is a pattern of coloration thought to have evolved in order to implement camouflage. By adopting a pattern of coloration that makes the surface facing towards the sun darker and the surface facing away from the sun lighter, the overall amount of light reflected off an animal can be made more uniformly bright. Countershading could hence contribute to visual camouflage by increasing background matching or reducing cues to shape. However, the usefulness of countershading is constrained by a particular pattern delivering ‘optimal’ camouflage only for very specific lighting conditions. In this study, we test the robustness of countershading camouflage to lighting change due to weather, using human participants as a ‘generic’ predator. In a simulated three-dimensional environment, we constructed an array of simple leaf-shaped items and a single ellipsoidal target ‘prey’. We set these items in two light environments: strongly directional ‘sunny’ and more diffuse ‘cloudy’. The target object was given the optimal pattern of countershading for one of these two environment types or displayed a uniform pattern. By measuring detection time and accuracy, we explored whether and how target detection depended on the match between the pattern of coloration on the target object and scene lighting. Detection times were longest when the countershading was appropriate to the illumination; incorrectly camouflaged targets were detected with a similar pattern of speed and accuracy to uniformly coloured targets. We conclude that structural changes in light environment, such as caused by differences in weather, do change the effectiveness of countershading camouflage
Implementation and validation of a wake model for vortex-surface interactions in low speed forward flight
The wake model was implemented using a VAX 750 and a Microvax II workstation. Online graphics capability using a DISSPLA graphics package. The rotor model used by Beddoes was significantly extended to include azimuthal variations due to forward flight and a simplified scheme for locating critical points where vortex elements are placed. A test case was obtained for validation of the predictions of induced velocity. Comparison of the results indicates that the code requires some more features before satisfactory predictions can be made over the whole rotor disk. Specifically, shed vorticity due to the azimuthal variation of blade loading must be incorporated into the model. Interactions between vortices shed from the four blades of the model rotor must be included. The Scully code for calculating the velocity field is being modified in parallel with these efforts to enable comparison with experimental data. To date, some comparisons with flow visualization data obtained at Georgia Tech were performed and show good agreement for the isolated rotor case. Comparison of time-resolved velocity data obtained at Georgia Tech also shows good agreement. Modifications are being implemented to enable generation of time-averaged results for comparison with NASA data
GSK3β regulates oligodendrogenesis in the dorsal microdomain of the subventricular zone via Wnt-β-catenin signaling
- …
