11 research outputs found
Comparison of stroke ward care versus mobile stroke teams in the Hungarian stroke database project
Handling Oxygenation Targets in the Intensive Care Unit (HOT-ICU)-Protocol for a randomised clinical trial comparing a lower vs a higher oxygenation target in adults with acute hypoxaemic respiratory failure
Background Acutely ill adults with hypoxaemic respiratory failure are at risk of life-threatening hypoxia, and thus oxygen is often administered liberally. Excessive oxygen use may, however, increase the number of serious adverse events, including death. Establishing the optimal oxygenation level is important as existing evidence is of low quality. We hypothesise that targeting an arterial partial pressure of oxygen (PaO2) of 8 kPa is superior to targeting a PaO2 of 12 kPa in adult intensive care unit (ICU) patients with acute hypoxaemic respiratory failure. Methods The Handling Oxygenation Targets in the ICU (HOT-ICU) trial is an outcome assessment blinded, multicentre, randomised, parallel-group trial targeting PaO2 in acutely ill adults with hypoxaemic respiratory failure within 12 hours after ICU admission. Patients are randomised 1:1 to one of the two PaO2 targets throughout ICU stay until a maximum of 90 days. The primary outcome is 90-day mortality. Secondary outcomes are serious adverse events in the ICU, days alive without organ support and days alive out of hospital in the 90-day period; mortality, health-related quality-of-life at 1-year follow-up as well as 1-year cognitive and pulmonary function in a subgroup; and an overall health economic analysis. To detect or reject a 20% relative risk reduction, we aim to include 2928 patients. An interim analysis is planned after 90-day follow-up of 1464 patients. Conclusion The HOT-ICU trial will test the hypothesis that a lower oxygenation target reduces 90-day mortality compared with a higher oxygenation target in adult ICU patients with acute hypoxaemic respiratory failure.Peer reviewe
Acute consumption of a shake containing cashew and Brazil nuts did not affect appetite in overweight subjects: a randomized, cross-over study
Handling Oxygenation Targets in the Intensive Care Unit (HOT‐ICU)—Protocol for a randomised clinical trial comparing a lower vs a higher oxygenation target in adults with acute hypoxaemic respiratory failure
Metasedimentary rocks of the paleoarchean Dniester-Bug Group, Ukrainian Shield: Composition, age, and sources
Microbial metabolites as molecular mediators of host-microbe symbiosis in colorectal cancer
The symbiosis between the gut microbiota and the host has been identified as an integral part of normal human physiology and physiological development. Research in germ-free or gnotobiotic animals has demonstrated the importance of this symbiosis in immune, vascular, hepatic, respiratory and metabolic systems. Disruption of the microbiota can also contribute to disease, and the microbiota has been implicated in numerous intestinal and extra-intestinal pathologies including colorectal cancer. Interactions between host and microbiota can occur either directly or indirectly, via microbial-derived metabolites. In this chapter, we focus on two major products of microbial metabolism, short-chain fatty acids and bile acids, and their role in colorectal cancer. Short-chain fatty acids are the products of microbial fermentation of complex carbohydrates and confer protection against cancer risk, while bile acids are compounds which are endogenous to the host, but undergo microbial modification in the large intestine leading to alterations in their bioactivity. Lastly, we discuss the ability of microbial modulation to mediate cancer risk and the potential to harness this ability as a prophylactic or therapeutic treatment in colorectal cancer
