6 research outputs found
Demyelination secondary to chronic nerve compression injury alters Schmidt–Lanterman incisures
The role of Schmidt–Lanterman incisures (SLIs) within the myelin sheath remains the subject of much debate. Previous studies have shown a positive correlation between the number of SLIs per internode and internodal width for both normal and pathological myelin internodes. As chronic nerve compression (CNC) injury induces demyelination, we sought to evaluate if CNC injury altered the occurrence of SLIs using nerve-teasing techniques and light microscopy. Rigorous examination of the teased axons from nerves subjected to CNC injury for 1 month, 2 months or 8 months revealed that there is indeed a positive correlation between the number of SLIs per internode and the internodal width. However, unlike previous studies, the degree of positive correlation between these two parameters was greater in the internodes that had undergone remyelination in response to CNC injury as compared with the internodes from control nerves. These findings support the theory that SLIs are likely to assist in the metabolic processes of the myelin sheath, including growth and maintenance of the myelin sheath
Quantitation of the Schmidt-Lanterman incisures in juvenile, adult, remyelinated and regenerated fibres of the chicken sciatic nerve
Transplanted neurons integrate into adult retinas and respond to light
Retinal ganglion cells (RGCs) degenerate in diseases like glaucoma and are not replaced in adult mammals. Here we investigate whether transplanted RGCs can integrate into the mature retina. We have transplanted GFP-labelled RGCs into uninjured rat retinas in vivo by intravitreal injection. Transplanted RGCs acquire the general morphology of endogenous RGCs, with axons orienting towards the optic nerve head of the host retina and dendrites growing into the inner plexiform layer. Preliminary data show in some cases GFP(+) axons extending within the host optic nerves and optic tract, reaching usual synaptic targets in the brain, including the lateral geniculate nucleus and superior colliculus. Electrophysiological recordings from transplanted RGCs demonstrate the cells' electrical excitability and light responses similar to host ON, ON–OFF and OFF RGCs, although less rapid and with greater adaptation. These data present a promising approach to develop cell replacement strategies in diseased retinas with degenerating RGCs
