7 research outputs found

    A complete characterization of plateaued Boolean functions in terms of their Cayley graphs

    Get PDF
    In this paper we find a complete characterization of plateaued Boolean functions in terms of the associated Cayley graphs. Precisely, we show that a Boolean function ff is ss-plateaued (of weight =2(n+s2)/2=2^{(n+s-2)/2}) if and only if the associated Cayley graph is a complete bipartite graph between the support of ff and its complement (hence the graph is strongly regular of parameters e=0,d=2(n+s2)/2e=0,d=2^{(n+s-2)/2}). Moreover, a Boolean function ff is ss-plateaued (of weight 2(n+s2)/2\neq 2^{(n+s-2)/2}) if and only if the associated Cayley graph is strongly 33-walk-regular (and also strongly \ell-walk-regular, for all odd 3\ell\geq 3) with some explicitly given parameters.Comment: 7 pages, 1 figure, Proceedings of Africacrypt 201

    Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications

    No full text
    corecore