3,359 research outputs found
Magnetic characterization and switching of Co nano-rings in current-perpendicular-to-plane configuration
We fabricated Co nano-rings incorporated in the vertical pseudo-spin-valve
nanopillar structures with deep submicron lateral sizes. It is shown that the
current-perpendicular-to-plane giant magnetoresistance can be used to
characterize a very small magnetic nano-ring effectively. Both the onion state
and the flux-closure vortex state are observed. The Co nano-rings can be
switched between the onion states as well as between onion and vortex states
not only by the external field but also by the perpendicularly injected dc
current
Warm absorber, reflection and Fe K line in the X-ray spectrum of IC 4329A
Results from the X-ray spectral analysis of the ASCA PV phase observation of
the Seyfert 1 galaxy IC 4329A are presented. We find that the 0.4 - 10 keV
spectrum of IC 4329A is best described by the sum of a steep () power-law spectrum passing through a warm absorber plus a strong
reflection component and associated Fe K line, confirming recent results
(Madejski et al. 1995, Mushotsky et al. 1995). Further cold absorption in
excess of the Galactic value and covering the entire source is also required by
the data, consistent with the edge-on galactic disk and previous X-ray
measurements. The effect of the warm absorber at soft X-ray energies is best
parameterized by two absorption edges, one consistent with OVI, OVII or NVII,
the other consistent with OVIII. A description of the soft excess in terms of
blackbody emission, as observed in some other Seyfert 1 galaxies, is ruled out
by the data. A large amount of reflection is detected in both the GIS and SIS
detectors, at similar intensities. We find a strong correlation between the
amount of reflection and the photon index, but argue that the best solution
with the present data is that given by the best statistical fit. The model
dependence of the Fe K line parameters is also discussed. Our best fit gives a
slightly broad ( keV) and redshifted (E keV) Fe K line, with equivalent width 89 33 eV.
The presence of a weak Fe K line with a strong reflection can be reconciled if
one assumes iron underabundances or ionized reflection. We also have modeled
the line with a theoretical line profile produced by an accretion disk. This
yields results in better agreement with the constraints obtained from the
reflection component.Comment: Accepted for publication in The Astrophysical Journal, 10th February
1996 issue; 24 pages and 8 figures + 1 table tared, compressed and uuencoded
(with uufiles
Effects of Domain Wall on Electronic Transport Properties in Mesoscopic Wire of Metallic Ferromagnets
We study the effect of the domain wall on electronic transport properties in
wire of ferromagnetic 3 transition metals based on the linear response
theory. We considered the exchange interaction between the conduction electron
and the magnetization, taking into account the scattering by impurities as
well. The effective electron-wall interaction is derived by use of a local
gauge transformation in the spin space. This interaction is treated
perturbatively to the second order. The conductivity contribution within the
classical (Boltzmann) transport theory turns out to be negligiblly small in
bulk magnets, due to a large thickness of the wall compared with the fermi
wavelength. It can be, however, significant in ballistic nanocontacts, as
indicated in recent experiments. We also discuss the quantum correction in
disordered case where the quantum coherence among electrons becomes important.
In such case of weak localization the wall can contribute to a decrease of
resistivity by causing dephasing. At lower temperature this effect grows and
can win over the classical contribution, in particular in wire of diameter
, being the inelastic diffusion
length. Conductance change of the quantum origin caused by the motion of the
wall is also discussed.Comment: 30 pages, 4 figures. Detailed paper of Phys. Rev. Lett. 78, 3773
(1997). Submitted to J. Phys. Soc. Jp
Extrinsic Spin Hall Effect Induced by Iridium Impurities in Copper
We study the extrinsic spin Hall effect induced by Ir impurities in Cu by
injecting a pure spin current into a CuIr wire from a lateral spin valve
structure. While no spin Hall effect is observed without Ir impurity, the spin
Hall resistivity of CuIr increases linearly with the impurity concentration.
The spin Hall angle of CuIr, % throughout the concentration
range between 1% and 12%, is practically independent of temperature. These
results represent a clear example of predominant skew scattering extrinsic
contribution to the spin Hall effect in a nonmagnetic alloy.Comment: 5 pages, 4 figure
Snapshot Observation for 2D Classical Lattice Models by Corner Transfer Matrix Renormalization Group
We report a way of obtaining a spin configuration snapshot, which is one of
the representative spin configurations in canonical ensemble, in a finite area
of infinite size two-dimensional (2D) classical lattice models. The corner
transfer matrix renormalization group (CTMRG), a variant of the density matrix
renormalization group (DMRG), is used for the numerical calculation. The matrix
product structure of the variational state in CTMRG makes it possible to
stochastically fix spins each by each according to the conditional probability
with respect to its environment.Comment: 4 pages, 8figure
On broad iron K-alpha lines in Seyfert 1 galaxies
The X-ray spectrum obtained by Tanaka et al from a long observation of the
active galaxy MCG shows a broad iron K line skewed to low
energies. The simplest interpretation of the shape of the line is that it is
due to doppler and gravitational redshifts from the inner parts of a disk about
a massive black hole. Similarly broad lines are evident in shorter observations
of several other active galaxies. In this paper we investigate other line
broadening and skewing mechanisms such as Comptonization in cold gas and
doppler shifts from outflows. We have also fitted complex spectral models to
the data of MCG to see whether the broad skewed line can be mimicked
well by other absorption or emission features. No satisfactory mechanism or
spectral model is found, thus strengthening the relativistic disk line model.Comment: uuencoded compressed postscript. The preprint is also available at
http://www.ast.cam.ac.uk/preprint/PrePrint.htm
- …
