3,359 research outputs found

    Magnetic characterization and switching of Co nano-rings in current-perpendicular-to-plane configuration

    Full text link
    We fabricated Co nano-rings incorporated in the vertical pseudo-spin-valve nanopillar structures with deep submicron lateral sizes. It is shown that the current-perpendicular-to-plane giant magnetoresistance can be used to characterize a very small magnetic nano-ring effectively. Both the onion state and the flux-closure vortex state are observed. The Co nano-rings can be switched between the onion states as well as between onion and vortex states not only by the external field but also by the perpendicularly injected dc current

    Warm absorber, reflection and Fe K line in the X-ray spectrum of IC 4329A

    Get PDF
    Results from the X-ray spectral analysis of the ASCA PV phase observation of the Seyfert 1 galaxy IC 4329A are presented. We find that the 0.4 - 10 keV spectrum of IC 4329A is best described by the sum of a steep (Γ1.98\Gamma \sim 1.98) power-law spectrum passing through a warm absorber plus a strong reflection component and associated Fe K line, confirming recent results (Madejski et al. 1995, Mushotsky et al. 1995). Further cold absorption in excess of the Galactic value and covering the entire source is also required by the data, consistent with the edge-on galactic disk and previous X-ray measurements. The effect of the warm absorber at soft X-ray energies is best parameterized by two absorption edges, one consistent with OVI, OVII or NVII, the other consistent with OVIII. A description of the soft excess in terms of blackbody emission, as observed in some other Seyfert 1 galaxies, is ruled out by the data. A large amount of reflection is detected in both the GIS and SIS detectors, at similar intensities. We find a strong correlation between the amount of reflection and the photon index, but argue that the best solution with the present data is that given by the best statistical fit. The model dependence of the Fe K line parameters is also discussed. Our best fit gives a slightly broad (σ0.11±0.08\sigma \simeq 0.11 \pm 0.08 keV) and redshifted (E 6.20±0.07\simeq 6.20 \pm 0.07 keV) Fe K line, with equivalent width \simeq 89 ±\pm 33 eV. The presence of a weak Fe K line with a strong reflection can be reconciled if one assumes iron underabundances or ionized reflection. We also have modeled the line with a theoretical line profile produced by an accretion disk. This yields results in better agreement with the constraints obtained from the reflection component.Comment: Accepted for publication in The Astrophysical Journal, 10th February 1996 issue; 24 pages and 8 figures + 1 table tared, compressed and uuencoded (with uufiles

    Effects of Domain Wall on Electronic Transport Properties in Mesoscopic Wire of Metallic Ferromagnets

    Full text link
    We study the effect of the domain wall on electronic transport properties in wire of ferromagnetic 3dd transition metals based on the linear response theory. We considered the exchange interaction between the conduction electron and the magnetization, taking into account the scattering by impurities as well. The effective electron-wall interaction is derived by use of a local gauge transformation in the spin space. This interaction is treated perturbatively to the second order. The conductivity contribution within the classical (Boltzmann) transport theory turns out to be negligiblly small in bulk magnets, due to a large thickness of the wall compared with the fermi wavelength. It can be, however, significant in ballistic nanocontacts, as indicated in recent experiments. We also discuss the quantum correction in disordered case where the quantum coherence among electrons becomes important. In such case of weak localization the wall can contribute to a decrease of resistivity by causing dephasing. At lower temperature this effect grows and can win over the classical contribution, in particular in wire of diameter LϕL_{\perp}\lesssim \ell_{\phi}, ϕ\ell_{\phi} being the inelastic diffusion length. Conductance change of the quantum origin caused by the motion of the wall is also discussed.Comment: 30 pages, 4 figures. Detailed paper of Phys. Rev. Lett. 78, 3773 (1997). Submitted to J. Phys. Soc. Jp

    Extrinsic Spin Hall Effect Induced by Iridium Impurities in Copper

    Get PDF
    We study the extrinsic spin Hall effect induced by Ir impurities in Cu by injecting a pure spin current into a CuIr wire from a lateral spin valve structure. While no spin Hall effect is observed without Ir impurity, the spin Hall resistivity of CuIr increases linearly with the impurity concentration. The spin Hall angle of CuIr, (2.1±0.6)(2.1 \pm 0.6)% throughout the concentration range between 1% and 12%, is practically independent of temperature. These results represent a clear example of predominant skew scattering extrinsic contribution to the spin Hall effect in a nonmagnetic alloy.Comment: 5 pages, 4 figure

    Snapshot Observation for 2D Classical Lattice Models by Corner Transfer Matrix Renormalization Group

    Full text link
    We report a way of obtaining a spin configuration snapshot, which is one of the representative spin configurations in canonical ensemble, in a finite area of infinite size two-dimensional (2D) classical lattice models. The corner transfer matrix renormalization group (CTMRG), a variant of the density matrix renormalization group (DMRG), is used for the numerical calculation. The matrix product structure of the variational state in CTMRG makes it possible to stochastically fix spins each by each according to the conditional probability with respect to its environment.Comment: 4 pages, 8figure

    On broad iron K-alpha lines in Seyfert 1 galaxies

    Full text link
    The X-ray spectrum obtained by Tanaka et al from a long observation of the active galaxy MCG63015-6-30-15 shows a broad iron Kα\alpha line skewed to low energies. The simplest interpretation of the shape of the line is that it is due to doppler and gravitational redshifts from the inner parts of a disk about a massive black hole. Similarly broad lines are evident in shorter observations of several other active galaxies. In this paper we investigate other line broadening and skewing mechanisms such as Comptonization in cold gas and doppler shifts from outflows. We have also fitted complex spectral models to the data of MCG63015-6-30-15 to see whether the broad skewed line can be mimicked well by other absorption or emission features. No satisfactory mechanism or spectral model is found, thus strengthening the relativistic disk line model.Comment: uuencoded compressed postscript. The preprint is also available at http://www.ast.cam.ac.uk/preprint/PrePrint.htm
    corecore