13,885 research outputs found

    Neutron methods for the direct determination of the magnetic induction in thick films

    Full text link
    We review different neutron methods which allow extracting directly the value of the magnetic induction in thick films: Larmor precession, Zeeman spatial beam-splitting and neutron spin resonance. Resulting parameters obtained by the neutron methods and standard magnetometry technique are presented and compared. The possibilities and specificities of the neutron methods are discussed

    Polarized neutron channeling as a tool for the investigations of weakly magnetic thin films

    Full text link
    We present and apply a new method to measure directly weak magnetization in thin films. The polarization of a neutron beam channeling through a thin film structure is measured after exiting the structure edge as a microbeam. We have applied the method to a tri-layer thin film structure acting as a planar waveguide for polarized neutrons. The middle guiding layer is a rare earth based ferrimagnetic material TbCo5 with a low magnetization of about 20 mT. We demonstrate that the channeling method is more sensitive than the specular neutron reflection method

    Controlling the dynamics of an open many-body quantum system with localized dissipation

    Full text link
    We experimentally investigate the action of a localized dissipative potential on a macroscopic matter wave, which we implement by shining an electron beam on an atomic Bose-Einstein condensate (BEC). We measure the losses induced by the dissipative potential as a function of the dissipation strength observing a paradoxical behavior when the strength of the dissipation exceeds a critical limit: for an increase of the dissipation rate the number of atoms lost from the BEC becomes lower. We repeat the experiment for different parameters of the electron beam and we compare our results with a simple theoretical model, finding excellent agreement. By monitoring the dynamics induced by the dissipative defect we identify the mechanisms which are responsible for the observed paradoxical behavior. We finally demonstrate the link between our dissipative dynamics and the measurement of the density distribution of the BEC allowing for a generalized definition of the Zeno effect. Due to the high degree of control on every parameter, our system is a promising candidate for the engineering of fully governable open quantum systems

    Thermal conductivity of single crystalline MgB_2

    Full text link
    The ab-plane thermal conductivity κ\kappa of single-crystalline hexagonal MgB_2 has been measured as a function of magnetic field H with orientations both parallel and perpendicular to the c-axis and at temperatures between 0.5 and 300 K. In the mixed state, κ(H)\kappa(H) measured at constant temperatures reveals features that are not typical for common type-II superconductors. The observed behavior may be associated with the field-induced reduction of two superconducting energy gaps, significantly different in magnitude. A nonlinear temperature dependence of the electronic thermal conductivity is observed in the field-induced normal state at low temperatures. This behavior is at variance with the Wiedemann-Franz law, and suggests an unexpected instability of the electronic subsystem in the normal state at T ~ 1 K.Comment: 9 pages,7 figure

    Non-cancellation of the parity anomaly in the strong-field regime of QED2+1_{2+1}

    Full text link
    Quantum fluctuations lead to an anomalous violation of parity symmetry in quantum electrodynamics for an even number of spatial dimensions. While the leading parity-odd electric current vanishes in vacuum, we uncover a non-cancellation of the anomaly for strong electric fields with distinct macroscopic signatures. We perform real-time lattice simulations with fully dynamical gauge fields and Wilson fermions in 2+12+1 space-time dimensions. In the static field limit, relevant at early times, we solve the problem analytically. Our results point out the fundamental role of quantum anomalies for strong-field phenomena, relevant for a wide range of condensed matter and high-energy applications, but also for the next generation of gauge theory quantum simulators.Comment: 6 pages, 4 figure
    corecore