3,369 research outputs found
Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China
Parafoveal Retinal Vascular Response to Pattern Visual Stimulation Assessed with OCT Angiography
We used optical coherence tomography (OCT) angiography with a high-speed swept-source OCT system to investigate retinal blood flow changes induced by visual stimulation with a reversing checkerboard pattern. The split-spectrum amplitude-decorrelation angiography (SSADA) algorithm was used to quantify blood flow as measured with parafoveal flow index (PFI), which is proportional to the density of blood vessels and the velocity of blood flow in the parafoveal region of the macula. PFI measurements were taken in 15 second intervals during a 4 minute period consisting of 1 minute of baseline, 2 minutes with an 8 Hz reversing checkerboard pattern stimulation, and 1 minute without stimulation. PFI measurements increased 6.1±4.7% (p = .001) during the first minute of stimulation, with the most significant increase in PFI occurring 30 seconds into stimulation (p<0.001). These results suggest that pattern stimulation induces a change to retinal blood flow that can be reliably measured with OCT angiography.National Institutes of Health (U.S.) (Grant R01 EY013516)National Institutes of Health (U.S.) (Grant Rosenbaum's P30EY010572)Research to Prevent Blindness, Inc. (United States) (Grant R01-Ey11289-26)United States. Air Force Office of Scientific Research (FA9550-10-1-0551
No-cloning theorem and teleportation criteria for quantum continuous variables
We discuss the criteria presently used for evaluating the efficiency of
quantum teleportation schemes for continuous variables. Using an argument based
upon the difference between 1-to-2 quantum cloning (quantum duplication) and
1-to-infinity cloning (classical measurement), we show that a fidelity value
larger than 2/3 is required for successful quantum teleportation of coherent
states. This value has not been reached experimentally so far.Comment: 4 pages, 1 figure, submitted to Phys. Rev.
Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier
We experimentally demonstrated that the quantum correlations of amplitude and
phase quadratures between signal and idler beams produced from a non-degenerate
optical parametric amplifier (NOPA) can be significantly improved by using a
mode cleaner in the pump field and reducing the phase fluctuations in phase
locking systems. Based on the two technical improvements the quantum
entanglement measured with a two-mode homodyne detector is enhanced from ~ 4 dB
to ~ 6 dB below the quantum noise limit using the same NOPA and nonlinear
crystal.Comment: 7 pages, 5 figure
Delayed - Choice Entanglement - Swapping with Vacuum-One Photon Quantum States
We report the experimental realization of a recently discovered quantum
information protocol by Asher Peres implying an apparent non-local quantum
mechanical retrodiction effect. The demonstration is carried out by applying a
novel quantum optical method by which each singlet entangled state is
physically implemented by a two-dimensional subspace of Fock states of a mode
of the electromagnetic field, specifically the space spanned by the vacuum and
the one photon state, along lines suggested recently by E. Knill et al., Nature
409, 46 (2001) and by M. Duan et al., Nature 414, 413 (2001). The successful
implementation of the new technique is expected to play an important role in
modern quantum information and communication and in EPR quantum non-locality
studies
Recommended from our members
A study into the behaviour of the formation level of an excavation under different unloading patterns in soft deposits
The construction of basements in urban areas is often associated with the possible damage to existing structures and services. The varying construction processes inevitably lead to different stress unloading patterns and therefore the dissipation of these excess pore-water pressures may lead to non-standard deformation profiles. The three main types of basement construction processes are layered excavation (LE), basin excavation (BE) and island excavation (IE). The effect of the various unloading patterns has been investigated by a three dimensional (3D) effective stress analysis method using the developed computer program 3DBCPE4.0. An excavation of length 50 m, width 50 m and depth 9 m in a certain homogenous and isotropic saturated soft soil was modelled. This included a diaphragm wall of 800-mm thickness embedded 18 m deep into the soft soil. The different excavation deformation profiles under different excavation patterns were related to the different unloading process, the exposure time of excavation face and the dissipation of negative excess pore-water pressures. The most favourable process for controlling the horizontal deformation of a retaining wall or the heave deformation of the formation level is suggested. The ground water potentials within the formation level are also presented
Speckle reduction in swept source optical coherence tomography images with slow-axis averaging
The effectiveness of speckle reduction using traditional frame averaging technique was limited in ultrahigh speed optical coherence tomography (OCT). As the motion between repeated frames was very small, the speckle pattern of the frames might be identical. This problem could be solved by averaging frames acquired at slightly different locations. The optimized scan range depended on the spot size of the laser beam, the smoothness of the boundary, and the homogeneity of the tissue. In this study we presented a method to average frames obtained within a narrow range along the slow-axis. A swept-source OCT with 100,000 Hz axial scan rate was used to scan the retina in vivo. A series of narrow raster scans (0-50 micron along the slow axis) were evaluated. Each scan contained 20 image frames evenly distributed in the scan range. The imaging frame rate was 417 HZ. Only frames with high correlation after rigid registration were used in averaging. The result showed that the contrast-to-noise ratio (CNR) increased with the scan range. But the best edge reservation was obtained with 15 micron scan range. Thus, for ultrahigh speed OCT systems, averaging frames from a narrow band along the slow-axis could achieve better speckle reduction than traditional frame averaging techniques
Contradiction of Quantum Mechanics with Local Hidden Variables for Continuous Variable Quadrature Phase Amplitude Measurements
We demonstrate a contradiction of quantum mechanics with local hidden
variable theories for continuous variable quadrature phase amplitude
(``position'' and ``momentum'') measurements, by way of a violation of a Bell
inequality. For any quantum state, this contradiction is lost for situations
where the quadrature phase amplitude results are always macroscopically
distinct. We show that for optical realisations of this experiment, where one
uses homodyne detection techniques to perform the quadrature phase amplitude
measurement, one has an amplification prior to detection, so that macroscopic
fields are incident on photodiode detectors. The high efficiencies of such
detectors may open a way for a loophole-free test of local hidden variable
theories.Comment: 9 pages,4 figures, previously publishe
Interferometric Tests of Teleportation
We investigate a direct test of teleportation efficacy based on a
Mach-Zehnder interferometer. The analysis is performed for continuous variable
teleportation of both discrete and continuous observables
Proposal for the Measurement of Bell-like Correlations from Continuous Variables
We show theoretically that Bell-type correlations can be observed between
continuous variable measurements performed on a parametric source. An auxiliary
measurement, performed on the detection environment, negates the possibility of
constructing a local realistic description of these correlations
- …
