6 research outputs found
Megascopic Quantum Phenomena. A Critical Study of Physical Interpretations
A megascopic revalidation is offered providing responses and resolutions of
current inconsistencies and existing contradictions in present-day quantum
theory. As the core of this study we present an independent proof of the
Goldstone theorem for a quantum field formulation of molecules and solids.
Along with phonons two types of new quasiparticles appear: rotons and
translons. In full analogy with Lorentz covariance, combining space and time
coordinates, a new covariance is necessary, binding together the internal and
external degrees of freedom, without explicitly separating the centre-of-mass,
which normally applies in both classical and quantum formulations. The
generally accepted view regarding the lack of a simple correspondence between
the Goldstone modes and broken symmetries, has significant consequences: an
ambiguous BCS theory as well as a subsequent Higgs mechanism. The application
of the archetype of the classical spontaneous symmetry breaking, i.e. the
Mexican hat, as compared to standard quantum relations, i.e. the Jahn-Teller
effect, superconductivity or the Higgs mechanism, becomes a disparity. In
short, symmetry broken states have a microscopic causal origin, but transitions
between them have a teleological component. The different treatments of the
problem of the centre of gravity in quantum mechanics and in field theories
imply a second type of Bohr complementarity on the many-body level opening the
door for megascopic representations of all basic microscopic quantum axioms
with further readings for teleonomic megascopic quantum phenomena, which have
no microscopic rationale: isomeric transitions, Jahn-Teller effect, chemical
reactions, Einstein-de Haas effect, superconductivity-superfluidity, and
brittle fracture.Comment: 117 pages, 17 sections, final revised version from 20 May 2019 but
uploaded after the DOI was know
The Extracytoplasmic Linker Peptide of the Sensor Protein SaeS Tunes the Kinase Activity Required for Staphylococcal Virulence in Response to Host Signals
The expression profiles of immune genes in Mus musculus macrophages during Staphylococcus aureus infection
Acetylsalicylic acid differentially limits the activation and expression of cell death markers in human platelets exposed to Staphylococcus aureus strains
International audienceBeyond their hemostatic functions, platelets alter their inflammatory response according to the bacterial stimulus. Staphylococcus aureus is associated with exacerbated inflammation and thrombocytopenia, which is associated with poor prognosis during sepsis. Acetylsalicylic acid and statins prevent platelet aggregation and decrease the mortality rate during sepsis. Therefore, we assessed whether these two molecules could reduce in vitro platelet activation and the inflammatory response to S. aureus. Platelets were exposed to clinical strains of S. aureus in the presence or absence of acetylsalicylic acid or fluvastatin. Platelet activation, aggregation, and release of soluble sCD62P, sCD40 Ligand, RANTES and GROα were assessed. Platelet cell death was evaluated by analyzing the mitochondrial membrane potential, phosphatidylserine exposure, platelet microparticle release and caspase-3 activation. All S. aureus strains induced platelet activation but not aggregation and decreased the platelet count, the expression of cell death markers and the release of RANTES and GROα. Acetylsalicylic acid but not fluvastatin limited platelet activation and inflammatory factor release and restored the platelet count by protecting platelets from Staphylococcus-induced expression of cell death markers. This study demonstrates that acetylsalicylic acid limits S. aureus-induced effects on platelets by reducing cell death, revealing new strategies to reduce the platelet contribution to bacteremia-associated inflammation
