1,045 research outputs found
Experimental Determination of the Antineutrino Spectrum of the Fission Products of U
An experiment was performed at the scientific neutron source FRM II in
Garching to determine the cumulative antineutrino spectrum of the fission
products of U. This was achieved by irradiating target foils of natural
uranium with a thermal and a fast neutron beam and recording the emitted
-spectra with a gamma-suppressing electron-telescope. The obtained
-spectrum of the fission products of U was normalized to the
data of the magnetic spectrometer BILL of U. This method strongly
reduces systematic errors in the U measurement. The -spectrum of
U was converted into the corresponding antineutrino spectrum. The final
-spectrum is given in 250 keV bins in the range from 2.875 MeV to
7.625 MeV with an energy-dependent error of 3.5 % at 3 MeV, 7.6 % at 6 MeV and
14 % at energies 7 MeV (68 % confidence level).
Furthermore, an energy-independent uncertainty of 3.3 % due to the
absolute normalization is added. Compared to the generally used summation
calculations, the obtained spectrum reveals a slight spectral distortion of
10 % but returns the same value for the mean cross section per fission
for the inverse beta decay
The General Theory of Quantum Field Mixing
We present a general theory of mixing for an arbitrary number of fields with
integer or half-integer spin. The time dynamics of the interacting fields is
solved and the Fock space for interacting fields is explicitly constructed. The
unitary inequivalence of the Fock space of base (unmixed) eigenstates and the
physical mixed eigenstates is shown by a straightforward algebraic method for
any number of flavors in boson or fermion statistics. The oscillation formulas
based on the nonperturbative vacuum are derived in a unified general
formulation and then applied to both two and three flavor cases. Especially,
the mixing of spin-1 (vector) mesons and the CKM mixing phenomena in the
Standard Model are discussed emphasizing the nonperturbative vacuum effect in
quantum field theory
Reactor Neutrino Experiments with a Large Liquid Scintillator Detector
We discuss several new ideas for reactor neutrino oscillation experiments
with a Large Liquid Scintillator Detector. We consider two different scenarios
for a measurement of the small mixing angle with a mobile
source: a nuclear-powered ship, such as a submarine or an
icebreaker, and a land-based scenario with a mobile reactor. The former setup
can achieve a sensitivity to at the 90%
confidence level, while the latter performs only slightly better than Double
Chooz. Furthermore, we study the precision that can be achieved for the solar
parameters, and , with a mobile reactor
and with a conventional power station. With the mobile reactor, a precision
slightly better than from current global fit data is possible, while with a
power reactor, the accuracy can be reduced to less than 1%. Such a precision is
crucial for testing theoretical models, e.g. quark-lepton complementarity.Comment: 18 pages, 3 figures, 2 tables, revised version, to appear in JHEP,
Fig. 1 extended, Formula added, minor changes, results unchange
Low Energy Neutrino Physics after SNO and KamLAND
In the recent years important discoveries in the field of low energy neutrino
physics (E in the MeV range) have been achieved. Results of the
solar neutrino experiment SNO show clearly flavor transitions from to
. In addition, the long standing solar neutrino problem is
basically solved. With KamLAND, an experiment measuring neutrinos emitted from
nuclear reactors at large distances, evidence for neutrino oscillations has
been found. The values for the oscillation parameters, amplitude and phase,
have been restricted. In this paper the potential of future projects in low
energy neutrino physics is discussed. This encompasses future solar and reactor
experiments as well as the direct search for neutrino masses. Finally the
potential of a large liquid scintillator detector in an underground laboratory
for supernova neutrino detection, solar neutrino detection, and the search for
proton decay is discussed.Comment: Invited brief review, World Scientific Publishing Compan
Establishing a nu_{mu,tau} Component in the Solar Neutrino Flux
We point out that the recoil electron kinetic energy spectra in the nu-e
elastic scattering are different for incident nu_{e} or nu_{mu,tau}, and hence
one can in principle establish the existence of the nu_{mu,tau} component in
the solar neutrino flux by fitting the shape of the spectrum. This would be a
new model-independent test of the solar neutrino oscillation in a single
experiment, free from astrophysical and nuclear physics uncertainties. For the
^7Be neutrinos, it is possible to determine the nu_{mu,tau} component at
BOREXINO or KamLAND, if the background is sufficiently low. Note that this
effect is different from the distortion in the incident neutrino energy
spectrum, which has been discussed in the literature.Comment: 12 pages, 3 figures, uses psfig. Figures reorganized, one corrected,
conclusions unchange
R2D2 - a symmetric measurement of reactor neutrinos free of systematical errors
We discuss a symmetric setup for a reactor neutrino oscillation experiment
consisting of two reactors separated by about 1 km, and two symmetrically
placed detectors, one close to each reactor. We show that such a configuration
allows a determination of which is essentially free of
systematical errors, if it is possible to separate the contributions of the two
reactors in each detector sufficiently. This can be achieved either by
considering data when in an alternating way only one reactor is running or by
directional sensitivity obtained from the neutron displacement in the detector.Comment: 11 pages, 3 figures, clarifications added, some numbers in relation
with the neutron displacement corrected, version to appear in JHE
Accelerator and Reactor Neutrino Oscillation Experiments in a Simple Three-Generation Framework
We present a new approach to the analysis of neutrino oscillation
experiments, in the one mass-scale limit of the three-generation scheme. In
this framework we reanalyze and recombine the most constraining accelerator and
reactor data, in order to draw precise bounds in the new parameter space. We
consider our graphical representations as particularly suited to show the
interplay among the different oscillation channels. Within the same framework,
the discovery potential of future short and long baseline experiments is also
investigated, in the light of both the recent signal from the LSND experiment
and the atmospheric neutrino anomaly.Comment: uuencoded compressed tar file. Figures (13) available by ftp to
ftp://eku.sns.ias.edu/pub/lisi/ (192.16.204.30). Submitted to Physical Review
Earth Matter Effects at Very Long Baselines and the Neutrino Mass Hierarchy
We study matter effects which arise in the muon neutrino oscillation and
survival probabilities relevant to atmospheric neutrino and very long baseline
beam experiments. The inter-relations between the three probabilities P_{\mu
e}, P_{\mu \tau} and P_{\mu \mu} are examined. It is shown that large and
observable sensitivity to the neutrino mass hierarchy can be present in P_{\mu
\mu} and P_{\mu \tau}. We emphasize that at baselines of > 7000 Km, matter
effects in P_{\mu \tau} can be large under certain conditions. The muon
survival rates in experiments with very long baselines thus depend on matter
effects in both P_{\mu \tau} and P_{\mu e}. We indicate where these effects are
sensitive to \theta_{13}, and identify ranges of E and L where the event rates
increase with decreasing \theta_{13}, providing a handle to probe small
\theta_{13}. The effect of parameter degeneracies in the three probabilities at
these baselines and energies is studied in detail. Realistic event rate
calculations are performed for a charge discriminating 100 kT iron calorimeter
which demonstrate the possibility of realising the goal of determining the
neutrino mass hierarchy using atmospheric neutrinos. It is shown that a careful
selection of energy and baseline ranges is necessary in order to obtain a
statistically significant signal, and that the effects are largest in bins
where matter effects in both P_{\mu e} and P_{\mu \tau} combine constructively.
Under these conditions, upto a 4\sigma signal for matter effects is possible
(for \Delta_{31}>0) within a timescale appreciably shorter than the one
anticipated for neutrino factories.Comment: 40 pages, 27 figures, version to match the published versio
The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment
Borexino is a solar neutrino experiment designed to observe the 0.86 MeV Be-7
neutrinos emitted in the pp cycle of the sun. Neutrinos will be detected by
their elastic scattering on electrons in 100 tons of liquid scintillator. The
neutrino event rate in the scintillator is expected to be low (~0.35 events per
day per ton), and the signals will be at energies below 1.5 MeV, where
background from natural radioactivity is prominent. Scintillation light
produced by the recoil electrons is observed by an array of 2240
photomultiplier tubes. Because of the intrinsic radioactive contaminants in
these PMTs, the liquid scintillator is shielded from them by a thick barrier of
buffer fluid. A spherical vessel made of thin nylon film contains the
scintillator, separating it from the surrounding buffer. The buffer region
itself is divided into two concentric shells by a second nylon vessel in order
to prevent inward diffusion of radon atoms. The radioactive background
requirements for Borexino are challenging to meet, especially for the
scintillator and these nylon vessels. Besides meeting requirements for low
radioactivity, the nylon vessels must also satisfy requirements for mechanical,
optical, and chemical properties. The present paper describes the research and
development, construction, and installation of the nylon vessels for the
Borexino experiment
- …
