1,289 research outputs found

    Analysis of shot noise suppression in mesoscopic cavities in a magnetic field

    Full text link
    We present a numerical investigation of shot noise suppression in mesoscopic cavities and an intuitive semiclassical explanation of the behavior observed in the presence of an orthogonal magnetic field. In particular, we conclude that the decrease of shot noise for increasing magnetic field is the result of the interplay between the diameter of classical cyclotron orbits and the width of the apertures defining the cavity. Good agreement with published experimental results is obtained, without the need of introducing fitting parameters.Comment: 5 pages, 3 figures, contents changed (final version

    Semiclassical structure of chaotic resonance eigenfunctions

    Get PDF
    We study the resonance (or Gamow) eigenstates of open chaotic systems in the semiclassical limit, distinguishing between left and right eigenstates of the non-unitary quantum propagator, and also between short-lived and long-lived states. The long-lived left (right) eigenstates are shown to concentrate as 0\hbar\to 0 on the forward (backward) trapped set of the classical dynamics. The limit of a sequence of eigenstates {ψ()}0\{\psi(\hbar)\}_{\hbar\to 0} is found to exhibit a remarkably rich structure in phase space that depends on the corresponding limiting decay rate. These results are illustrated for the open baker map, for which the probability density in position space is observed to have self-similarity properties.Comment: 4 pages, 4 figures; some minor corrections, some changes in presentatio

    Positive Cross Correlations in a Normal-Conducting Fermionic Beam Splitter

    Full text link
    We investigate a beam splitter experiment implemented in a normal conducting fermionic electron gas in the quantum Hall regime. The cross-correlations between the current fluctuations in the two exit leads of the three terminal device are found to be negative, zero or even positive depending on the scattering mechanism within the device. Reversal of the cross-correlations sign occurs due to interaction between different edge-states and does not reflect the statistics of the fermionic particles which `antibunch'.Comment: 4 pages, 4 figure

    Shot noise of series quantum point contacts intercalating chaotic cavities

    Get PDF
    Shot noise of series quantum point contacts forming a sequence of cavities in a two dimensional electron gas are studied theoretically and experimentally. Noise in such a structure originates from local scattering at the point contacts as well as from chaotic motion of the electrons in the cavities. We found that the measured shot noise is in reasonable agreement with our theoretical prediction taking the cavity noise into account.Comment: 4 pages, 5 figure

    Shot Noise and Full Counting Statistics from Non-equilibrium Plasmons in Luttinger-Liquid Junctions

    Full text link
    We consider a quantum wire double junction system with each wire segment described by a spinless Luttinger model, and study theoretically shot noise in this system in the sequential tunneling regime. We find that the non-equilibrium plasmonic excitations in the central wire segment give rise to qualitatively different behavior compared to the case with equilibrium plasmons. In particular, shot noise is greatly enhanced by them, and exceeds the Poisson limit. We show that the enhancement can be explained by the emergence of several current-carrying processes, and that the effect disappears if the channels effectively collapse to one due to, {\em e.g.}, fast plasmon relaxation processes.Comment: 9 pages; IOP Journal style; several changes in the tex

    Full counting statistics of chaotic cavities with many open channels

    Full text link
    Explicit formulas are obtained for all moments and for all cumulants of the electric current through a quantum chaotic cavity attached to two ideal leads, thus providing the full counting statistics for this type of system. The approach is based on random matrix theory, and is valid in the limit when both leads have many open channels. For an arbitrary number of open channels we present the third cumulant and an example of non-linear statistics.Comment: 4 pages, no figures; v2-added references; typos correcte

    Dynamic generation of orbital quasiparticle entanglement in mesoscopic conductors

    Full text link
    We propose a scheme for dynamically creating orbitally entangled electron-hole pairs through a time-dependent variation of the electrical potential in a mesoscopic conductor. The time-dependent potential generates a superposition of electron-hole pairs in two different orbital regions of the conductor, a Mach-Zehnder interferometer in the quantum Hall regime. The orbital entanglement is detected via violation of a Bell inequality, formulated in terms of zero-frequency current noise. Adiabatic cycling of the potential, both in the weak and strong amplitude limit, is considered.Comment: 4 pages, 2 figures; references update

    Quantum partition noise of photo-created electron-hole pairs

    Full text link
    We show experimentally that even when no bias voltage is applied to a quantum conductor, the electronic quantum partition noise can be investigated using GHz radiofrequency irradiation of a reservoir. Using a Quantum Point Contact configuration as the ballistic conductor we are able to make an accurate determination of the partition noise Fano factor resulting from the photo-assisted shot noise. Applying both voltage bias and rf irradiation we are able to make a definitive quantitative test of the scattering theory of photo-assisted shot noise.Comment: 4 pages, 4 figure
    corecore