827 research outputs found
Compressive sensing adaptation for polynomial chaos expansions
Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of
the underlying Gaussian germ. Several rotations have been proposed in the
literature resulting in adaptations with different convergence properties. In
this paper we present a new adaptation mechanism that builds on compressive
sensing algorithms, resulting in a reduced polynomial chaos approximation with
optimal sparsity. The developed adaptation algorithm consists of a two-step
optimization procedure that computes the optimal coefficients and the input
projection matrix of a low dimensional chaos expansion with respect to an
optimally rotated basis. We demonstrate the attractive features of our
algorithm through several numerical examples including the application on
Large-Eddy Simulation (LES) calculations of turbulent combustion in a HIFiRE
scramjet engine.Comment: Submitted to Journal of Computational Physic
An Approach to Improved Credibility of CFD Simulations for Rocket Injector Design
Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by simulating the sensitivity of performance and injector-driven thermal environments to. the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process.. This paper documents the status of an effort to understand and compare the predictive capabilities and resource requirements of a range of CFD methodologies on a set of model problem injectors. Preliminary results from a steady Reynolds-Average Navier-Stokes (RANS), an unsteady Reynolds-Average Navier Stokes (URANS) and three different Large Eddy Simulation (LES) techniques used to model a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants are presented. Initial observations are made comparing instantaneous results, corresponding time-averaged and steady-state solutions in the near -injector flow field. Significant differences in the flow fields exist, as expected, and are discussed. An important preliminary result is the identification of a fundamental mixing mechanism, accounted for by URANS and LES, but missing in the steady BANS methodology. Since propellant mixing is the core injector function, this mixing process may prove to have a profound effect on the ability to more correctly simulate injector performance and resulting thermal environments. Issues important to unifying the basis for future comparison such as solution initialization, required run time and grid resolution are addressed
Numerical Benchmark for High-Reynolds-Number Supercritical Flows with Large Density Gradients
Because of the extreme complexity of physical phenomena at high pressure, only limited data are available for solver validation at device-relevant conditions such as liquid rocket engines, gas turbines, or diesel engines. In the present study, a two-dimensional direct numerical simulation is used to establish a benchmark for supercritical flow at a high Reynolds number and high-density ratio at conditions typically encountered in liquid rocket engines. Emphasis has been placed on maintaining the flow characteristics of actual systems with simple boundary conditions, grid spacing, and geometry. Results from two different state-of-the-art codes, with markedly different numerical formalisms, are compared using this benchmark. The strong similarity between the two numerical predictions lends confidence to the physical accuracy of the results. The established database can be used for solver benchmarking and model development at conditions relevant to many propulsion and power systems
A Priori Analysis of a Compressible Flamelet Model using RANS Data for a Dual-Mode Scramjet Combustor
In an effort to make large eddy simulation of hydrocarbon-fueled scramjet combustors more computationally accessible using realistic chemical reaction mechanisms, a compressible flamelet/progress variable (FPV) model was proposed that extends current FPV model formulations to high-speed, compressible flows. Development of this model relied on observations garnered from an a priori analysis of the Reynolds-Averaged Navier-Stokes (RANS) data obtained for the Hypersonic International Flight Research and Experimentation (HI-FiRE) dual-mode scramjet combustor. The RANS data were obtained using a reduced chemical mechanism for the combustion of a JP-7 surrogate and were validated using avail- able experimental data. These RANS data were then post-processed to obtain, in an a priori fashion, the scalar fields corresponding to an FPV-based modeling approach. In the current work, in addition to the proposed compressible flamelet model, a standard incompressible FPV model was also considered. Several candidate progress variables were investigated for their ability to recover static temperature and major and minor product species. The effects of pressure and temperature on the tabulated progress variable source term were characterized, and model coupling terms embedded in the Reynolds- averaged Navier-Stokes equations were studied. Finally, results for the novel compressible flamelet/progress variable model were presented to demonstrate the improvement attained by modeling the effects of pressure and flamelet boundary conditions on the combustion
Ordnance separation flight test matrix reduction
This study deals with the methods a program manager may use to reduce the size of an Ordnance Separation Flight Test Matrix. A program manager involved in military flight test and evaluation of ordnance separation projects has various concerns which must be contended with throughout the life-cycle of the program. One of these is minimizing the size of the flight test matrix. This can be done in various programmatic and technical ways. One programmatic solution is the formulation of an integrated test team which uses an integrated approach to the flight test. Another programmatic solution is properly applied risk management, including configuration control and store release restrictions. Accurately modeling the performance of the system is a technical solution to minimizing the size of the flight test matrix, particularly in the HMD phase. By using current flight test performance predictors such as wind tunnel analysis and demonstrations based on analogy, the program manager has shown that one can avoid unnecessary incremental build-up. Computer-based simulations are increasing test team confidence so that critical areas can be identified and appropriate testing can be accomplished. CFD such as SPLITFLOW and using unstructured grids are the most accurate modeling techniques currently available for the ordnance separation modeling problem. Future applications such as virtual prototyping and virtual piloting are giving the program manager new methodologies in his desire to keep cost and schedule demands low. When applied in an integrated manner, they give the program manager a way to safely minimize his flight test matrix, avoiding unnecessary incremental build-up and keeping the overall costs of his program down
A non-premixed combustion model based on flame structure analysis at supercritical pressures
This work presents a study of non-premixed flames at supercritical-pressure conditions. Emphasis is placed on flame stability in liquid rocket engines fueled with liquid oxygen and gaseous hydrogen. The flame structure sensitivity to strain, pressure, temperature and real-fluid effects was investigated in detailed opposed-jet flames calculations. It is shown that the flame is very robust to strain, that the flamelet assumption is valid for the conditions of interest, and that real-fluid phenomena can have a significant impact on flame topology. At high-pressure supercritical conditions, small pressure or temperature variations can induce strong changes of thermodynamic properties across the flame. A substantial finding was also that the presence of water from combustion significantly increases the critical pressure of the mixture, but this does not lead to a saturated state where two-phase flow may be observed. The present study then shows that a single-phase real-fluid approach is relevant for supercritical hydrogen–oxygen combustion. Resultant observations are used to develop a flamelet model framework that combines detailed real-fluid thermodynamics with a tabulated chemistry approach. The governing equation for energy contains a compressible source term that models the flame. Through this approach, the solver is capable of capturing compressibility and strain-rate effects. Good agreements have been obtained with respect to detailed computations. Heat release sensitivity to strain and pressure variations is also recovered. Consequently, this approach can be used to study combustion stability in actual burners. The approach preserves the density gradient in the high-shear region between the liquid-oxygen jet and product rich flame region. The latter is a key requirement to properly simulate dense-fluid jet destabilization and mixing in practical devices
Authority and Politics: The Relation Between Authority and Political Views Among Those With the Normative Identity Style
The purpose of this study was to determine whether a relationship exists between the theorized identity styles and political positions, views, and opinions. Also investigated were the effects of authority on political views, specifically within the normative identity style. Students at a large southeastern metropolitan university (N = 440) took an anonymous online survey in exchange for course credit. Those with a normative identity style, who look to authority figures for answers, were found to have much higher levels of conservatism and held more conservative positions than did those with an informational style, who seek out their own sources for answers. Those with a diffuse-avoidant style, who avoid making identity related decisions, fell between the normative and informational styles on most of these measures. For those with a normative identity style, political views on welfare deservingness were better predicted by news media choice and parental political ideology than by personal political ideology. For those with an informational identity style, most political views were better predicted by personal political ideology than by news media choice, parental political ideology, or parental news media choice. A lack of usage of traditional media in favor of social media may explain some of the results. Further implications are discussed
Risk of colorectal cancer in men on long-term androgen deprivation therapy for prostate cancer
Background Androgen deprivation with gonadotropin-releasing hormone (GnRH) agonists or orchiectomy is a common but controversial treatment for prostate cancer. Uncertainties remain about its use, particularly with increasing recognition of serious side effects. In animal studies, androgens protect against colonic carcinogenesis, suggesting that androgen deprivation may increase the risk of colorectal cancer. Methods We identified 107 859 men in the linked Surveillance, Epidemiology, and End Results (SEER)-Medicare database who were diagnosed with prostate cancer in 1993 through 2002, with follow-up available through 2004. The primary outcome was development of colorectal cancer, determined from SEER files on second primary cancers. Cox proportional hazards regression was used to assess the influence of androgen deprivation on the outcome, adjusted for patient and prostate cancer characteristics. All statistical tests were two-sided. Results Men who had orchiectomies had the highest unadjusted incidence rate of colorectal cancer (6.3 per 1000 person-years; 95% confidence interval [CI] = 5.3 to 7.5), followed by men who had GnRH agonist therapy (4.4 per 1000 person-years; 95% CI = 4.0 to 4.9), and men who had no androgen deprivation (3.7 per 1000 person-years; 95% CI = 3.5 to 3.9). After adjustment for patient and prostate cancer characteristics, there was a statistically significant dose-response effect (P(trend) = .010) with an increasing risk of colorectal cancer associated with increasing duration of androgen deprivation. Compared with the absence of these treatments, there was an increased risk of colorectal cancer associated with use of GnRH agonist therapy for 25 months or longer (hazard ratio [HR] = 1.31, 95% CI = 1.12 to 1.53) or with orchiectomy (HR = 1.37, 95% CI = 1.14 to 1.66). Conclusion Long-term androgen deprivation therapy for prostate cancer is associated with an increased risk of colorectal cancer
- …
