949 research outputs found
Computationally designed variants of Escherichia coli chorismate mutase show altered catalytic activity
Computational protein design methods were used to predict five variants of monofunctional Escherichia coli chorismate mutase expected to maintain catalytic activity. The variants were tested experimentally and three active site mutants exhibited catalytic activity similar to or greater than the wild-type enzyme. One mutant, Ala32Ser, showed increased catalytic efficiency
Hydroxyl groups in the ββ sandwich of metallo-β-lactamases favor enzyme activity: a computational protein design study
Metallo-β-lactamases challenge antimicrobial therapies by their ability to hydrolyze and inactivate a broad spectrum of β-lactam antibiotics. The potential of these enzymes to acquire enhanced catalytic efficiency through mutation is of great concern. Here, we explore the potential of computational protein design to predict mutants of the imipenemase IMP-1 that modulate the catalytic efficiency of the enzyme against a range of substrates. Focusing on the four amino acid positions 69, 121, 218, and 262, we carried out a number of design calculations. Two mutant enzymes were predicted: the single mutant S262A and the double mutant F218Y-S262A. Compared to IMP-1, the single mutant (S262A) results in the loss of a hydroxyl group and the double mutant (F218Y-S262A) results in a hydroxyl transfer from position 262 to position 218. The presence of both hydroxyl groups at positions 218 and 262 was tested by examining the mutant F218Y. Kinetic constants of IMP-1, the two computationally designed mutants (S262A and F218Y-S262A), and the hydroxyl addition mutant (F218Y) were determined with seven substrates. Catalytic efficiencies are highest for the enzyme with both hydroxyl groups (F218Y) and lowest for the enzyme lacking both hydroxyl groups (S262A). The catalytic efficiencies of the two enzymes with one hydroxyl group each are intermediate, with the F218Y-S262A double mutant exhibiting enhanced hydrolysis of nitrocefin, cephalothin, and cefotaxime relative to IMP-1
Cooperative strategies for pairwise secure communication channels in sensor networks
Establishing secure communication channels in sensor networks is made especially difficult because of low power resources, hostile environments, and wireless communication. The power requirements of traditional cryptographic methods create the need for alternative strategies for secure communication in sensor networks. This thesis explores key distribution techniques in sensor networks. Specifically, we study in depth one method that enables sensors to establish pairwise secure communication channels. This strategy relies on a cooperative set of peer sensors to construct a unique key between two sensors. We built a unique network simulator to test secure communication parameters in a typical deployment scenario. This research tests the strategy by which the cooperative set of sensors is chosen. The results demonstrate that a strategy favoring neighbor nodes consumes significantly less energy than other alternatives at the expense of vulnerability to geographically localized attacks
A New Bioactive Compound From the Marine Sponge-Derived Streptomyces sp. SBT348 Inhibits Staphylococcal Growth and Biofilm Formation
Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 μg/ml) and biofilm formation (sub-MIC range: 1.95–<31.25 μg/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs
Exploring Spirituality in Teaching Within a Christian School Context Through Collaborative Action Research
This article reports on a collaborative action research project conducted in New Zealand, during 2012, exploring spirituality in teaching within a Christian school context. The experienced primary school teacher participant chose to take action around the issue of personal fear and insecurity which were believed to be hindering professional growth and relationships. Through self-directed inquiry, critical reflective journaling, Bible study, fellowship and prayer with trusted friends, the teacher experienced a renewed sense of peace and freedom in Christ. This personal transformation was believed to be influential on subsequent professional practice, assisting the teacher to become more relational, responsive and compassionate. The findings provide a rich description of the participant’s spirituality, the lived reality of a person’s spiritual life. This report will be of interest to teachers, teacher-leaders and teacher-educators who desire to explore Christian spirituality through practitioner-led inquiry
In Vitro characterization of Lactococcus lactis strains Isolated from Iranian Traditional Dairy Products as a Potential Probiotic
Few studies have been reported regarding probiotic properties of Lactococcus lactis strains although they are extensively used as starter cultures in the production of dairy products. In this study 8 wild isolates of Lactococcus lactis were evaluated in vitro with regard to resistance to simulated gastric and intestinal juices, adherence ability to Caco-2 cells and HT29-MTX-E12 cell lines, anti-microbial activity, hydrophobicity and antibiotic susceptibility. The results revealed that all isolates had better survival after exposure to simulated gastrointestinal tract stresses in comparison to control probiotic Lactobacillus rhamnosus GG. Regarding adherence efficiency, almost all isolates exhibited similar adherence with control. Three isolates showed antibacterial activity against Gram-positive pathogens (Staphylococcus aureus and Listeria monocytogenes) through spot-agar method. Almost all isolates (seven out of eight) showed similar hydrophobicity to control probiotic. Regarding to antibiotic resistance, all isolates were susceptible to gentamicin, ampicillin, ciprofloxacin, erythromycin, tetracycline, penicillin, kanamycin and nitrofurantoin. Although, further investigations are necessary, it was concluded that strains derived from raw milk and home-made dairy products could be a remarkable reservoir for identification of new potential probiotic strains
' Lactobacillus fermentum ' 3872 genome sequencing reveals plasmid and chromosomal genes potentially involved in a probiotic activity.
In this report we describe a ' Lactobacillus fermentum ' 3872 plasmid (pLF3872) not previously found in any other strain of this species. The analysis of the complete sequence of this plasmid revealed the presence of a gene encoding a large collagen binding protein (CBP), as well as the genes responsible for plasmid maintenance and conjugation. Potential roles of CBP and a chromosomally encoded fibronectin-binding protein (FbpA) in probiotic activity are discussed
- …
