1,590 research outputs found

    Parametrizations of Quark Confinement in Production Processes

    Full text link
    Baryons are described as bound states of quarks and scalar as well as axialvector diquarks. In order to effectively parametrize confinement several {\it ansaetze} for the dressing functions of the constituent propagators are used. The corresponding results for electromagnetic and strong form factors differ only slightly. On the other hand observables from production processes show the permissibility of different dressing functions.Comment: 2 pages, 2 figures, talk given at the workshop {\it The Spin Structure of the Proton}, Trento, July 23rd to 28th, 200

    Nucleon form factors from a covariant quark core: limits in their description

    Get PDF
    In treating the relativistic three-quark problem, a dressed-quark propagator parameterization is used which is compatible with recent lattice data and pion observables. Furthermore two-quark correlations are modeled as a series of quark loops in the scalar and axialvector channel. The resulting reduced Faddeev equations are solved for nucleon and delta. Nucleon electromagnetic form factors are calculated in a fully covariant and gauge--invariant scheme. Whereas the proton electric form factor GEG_E and the nucleon magnetic moments are described correctly, the neutron electric form factor and the ratio GE/GMG_E/G_M for the proton appear to be quenched. The influence of vector mesons on the form factors is investigated which amounts to a 25 percent modification of the electromagnetic proton radii within this framework.Comment: 28 pages, 10 figures, 4 table

    Effective forces between colloids at interfaces induced by capillary wave-like fluctuations

    Full text link
    We calculate the effective force mediated by thermally excited capillary waves between spherical or disklike colloids trapped at a fluid interface. This Casimir type interaction is shown to depend sensitively on the boundary conditions imposed at the three-phase contact line. For large distances between the colloids an unexpected cancellation of attractive and repulsive contributions is observed leading to a fluctuation force which decays algebraically very rapidly. For small separations the resulting force is rather strong and it may play an important role in two-dimensional colloid aggregation if direct van der Waals forces are weak.Comment: 7 pages, 3 figures, minor revisions, one additional figur

    The Importance of Boundary Conditions for Fluctuation Induced Forces between Colloids at Interfaces

    Full text link
    We calculate the effective fluctuation induced force between spherical or disk-like colloids trapped at a flat, fluid interface mediated by thermally excited capillary waves. This Casimir type force is determined by the partition function of the system which in turn is calculated in a functional integral approach, where the restrictions on the capillary waves imposed by the colloids are incorporated by auxiliary fields. In the long-range regime the fluctuation induced force is shown to depend sensitively on the boundary conditions imposed at the three-phase contact line between the colloids and the two fluid phases. The splitting of the fluctuating capillary wave field into a mean-field and a fluctuation part leads to competing repulsive and attractive contributions, respectively, which give rise to cancellations of the leading terms. In a second approach based on multipole expansion of the Casimir interaction, these cancellations can be understood from the vanishing of certain multipole moments enforced by the boundary conditions. We also discuss the connection of the different types of boundary conditions to certain external fields acting on the colloids which appear to be realizable by experimental techniques such as the laser tweezer method.Comment: 24 pages, 4 figure

    Multipolar expansion of the electrostatic interaction between charged colloids at interfaces

    Full text link
    The general form of the electrostatic potential around an arbitrarily charged colloid at an interface between a dielectric and a screening phase (such as air and water, respectively) is analyzed in terms of a multipole expansion. The leading term is isotropic in the interfacial plane and varies with d3d^{-3} where dd is the in--plane distance from the colloid. The electrostatic interaction potential between two arbitrarily charged colloids is likewise isotropic and d3\propto d^{-3}, corresponding to the dipole--dipole interaction first found for point charges at water interfaces. Anisotropic interaction terms arise only for higher powers dnd^{-n} with n4n \ge 4.Comment: 6 pages, mathematical details adde

    Dynamics of colloidal particles with capillary interactions

    Full text link
    We investigate the dynamics of colloids at a fluid interface driven by attractive capillary interactions. At submillimeter length scales, the capillary attraction is formally analogous to two-dimensional gravity. In particular it is a non-integrable interaction and it can be actually relevant for collective phenomena in spite of its weakness at the level of the pair potential. We introduce a mean-field model for the dynamical evolution of the particle number density at the interface. For generic values of the physical parameters the homogeneous distribution is found to be unstable against large-scale clustering driven by the capillary attraction. We also show that for the instability to be observable, the appropriate values for the relevant parameters (colloid radius, surface charge, external electric field, etc.) are experimentally well accessible. Our analysis contributes to current studies of the structure and dynamics of systems governed by long-ranged interactions and points towards their experimental realizations via colloidal suspensions.Comment: Matches version accepted for publication. New refs. added, misprints corrected in figs.6,8,9,1

    Mode expansion for the density profile of crystal-fluid interfaces: Hard spheres as a test case

    Full text link
    We present a technique for analyzing the full three-dimensional density profiles of a planar crystal-fluid interface in terms of density modes. These density modes can also be related to crystallinity order parameter profiles which are used in coarse-grained, phase field type models of the statics and dynamics of crystal-fluid interfaces and are an alternative to crystallinity order parameters extracted from simulations using local crystallinity criteria. We illustrate our results for the hard sphere system using finely-resolved, three-dimensional density profiles from density functional theory of fundamental measure type.Comment: submitted for the special issue of the CODEF III conferenc
    corecore