132 research outputs found
Akt-Induced Phosphorylation of N-CoR at Serine 1450 Contributes to Its Misfolded Conformational Dependent Loss (MCDL) in Acute Myeloid Leukemia of the M5 Subtype
10.1371/journal.pone.0070891PLoS ONE88-POLN
The impact of viral mutations on recognition by SARS-CoV-2 specific T cells
We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity
Morphogenesis of Strongyloides stercoralis Infective Larvae Requires the DAF-16 Ortholog FKTF-1
Based on metabolic and morphological similarities between infective third-stage larvae of parasitic nematodes and dauer larvae of Caenorhabditis elegans, it is hypothesized that similar genetic mechanisms control the development of these forms. In the parasite Strongyloides stercoralis, FKTF-1 is an ortholog of DAF-16, a forkhead transcription factor that regulates dauer larval development in C. elegans. Using transgenesis, we investigated the role of FKTF-1 in S. stercoralis' infective larval development. In first-stage larvae, GFP-tagged recombinant FKTF-1b localizes to the pharynx and hypodermis, tissues remodeled in infective larvae. Activating and inactivating mutations at predicted AKT phosphorylation sites on FKTF-1b give constitutive cytoplasmic and nuclear localization of the protein, respectively, indicating that its post-translational regulation is similar to other FOXO-class transcription factors. Mutant constructs designed to interfere with endogenous FKTF-1b function altered the intestinal and pharyngeal development of the larvae and resulted in some transgenic larvae failing to arrest in the infective stage. Our findings indicate that FKTF-1b is required for proper morphogenesis of S. stercoralis infective larvae and support the overall hypothesis of similar regulation of dauer development in C. elegans and the formation of infective larvae in parasitic nematodes
Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus
A Novel Role for the SMG-1 Kinase in Lifespan and Oxidative Stress Resistance in Caenorhabditis elegans
The PTEN tumour suppressor encodes a phosphatase, and its daf-18 orthologue in Caenorhabditis elegans negatively regulates the insulin/IGF-1 DAF-2 receptor pathway that influences lifespan in worms and other species. In order to identify new DAF-18 regulated pathways involved in aging, we initiated a candidate RNAi feeding screen for clones that lengthen lifespan. Here, we report that smg-1 inactivation increases average lifespan in a daf-18 dependent manner. Genetic analysis is consistent with SMG-1 acting at least in part in parallel to the canonical DAF-2 receptor pathway, but converging on the transcription factor DAF-16/FOXO. SMG-1 is a serine-threonine kinase which plays a conserved role in nonsense-mediated mRNA decay (NMD) in worms and mammals. In addition, human SMG-1 has also been implicated in the p53-mediated response to genotoxic stress. The effect of smg-1 inactivation on lifespan appears to be unrelated to its NMD function, but requires the p53 tumour suppressor orthologue cep-1. Furthermore, smg-1 inactivation confers a resistance to oxidative stress in a daf-18-, daf-16- and cep-1-dependent manner. We propose that the role of SMG-1 in lifespan regulation is at least partly dependent on its function in oxidative stress resistance. Taken together, our results unveil a novel role for SMG-1 in lifespan regulation
Validation of the Finnish version of the SCOFF questionnaire among young adults aged 20 to 35 years
<p>Abstract</p> <p>Background</p> <p>We tested the validity of the SCOFF, a five-question screening instrument for eating disorders, in a general population sample.</p> <p>Methods</p> <p>A random sample of 1863 Finnish young adults was approached with a questionnaire that contained several screens for mental health interview, including the SCOFF. The questionnaire was returned by 1316 persons. All screen positives and a random sample of screen negatives were invited to SCID interview. Altogether 541 subjects participated in the SCID interview and had filled in the SCOFF questionnaire. We investigated the validity of the SCOFF in detecting current eating disorders by calculating sensitivity, specificity, and positive and negative predictive values (PPV and NPV) for different cut-off scores. We also performed a ROC analysis based on these 541 persons, of whom nine had current eating disorder.</p> <p>Results</p> <p>The threshold of two positive answers presented the best ability to detect eating disorders, with a sensitivity of 77.8%, a specificity of 87.6%, a PPV of 9.7%, and a NPV of 99.6%. None of the subjects with current eating disorder scored zero points in the SCOFF.</p> <p>Conclusion</p> <p>Due to its low PPV, there are limitations in using the SCOFF as a screening instrument in unselected population samples. However, it might be used for ruling out the possibility of eating disorders.</p
Role of Cajal Bodies and Nucleolus in the Maturation of the U1 snRNP in Arabidopsis
Background: The biogenesis of spliceosomal snRNPs takes place in both the cytoplasm where Sm core proteins are added and snRNAs are modified at the 59 and 39 termini and in the nucleus where snRNP-specific proteins associate. U1 snRNP consists of U1 snRNA, seven Sm proteins and three snRNP-specific proteins, U1-70K, U1A, and U1C. It has been shown previously that after import to the nucleus U2 and U4/U6 snRNP-specific proteins first appear in Cajal bodies (CB) and then in splicing speckles. In addition, in cells grown under normal conditions U2, U4, U5, and U6 snRNAs/snRNPs are abundant in CBs. Therefore, it has been proposed that the final assembly of these spliceosomal snRNPs takes place in this nuclear compartment. In contrast, U1 snRNA in both animal and plant cells has rarely been found in this nuclear compartment. Methodology/Principal Findings: Here, we analysed the subnuclear distribution of Arabidopsis U1 snRNP-specific proteins fused to GFP or mRFP in transiently transformed Arabidopsis protoplasts. Irrespective of the tag used, U1-70K was exclusively found in the nucleus, whereas U1A and U1C were equally distributed between the nucleus and the cytoplasm. In the nucleus all three proteins localised to CBs and nucleoli although to different extent. Interestingly, we also found that the appearance of the three proteins in nuclear speckles differ significantly. U1-70K was mostly found in speckles whereas U1A and U1C in,90 % of cells showed diffuse nucleoplasmic in combination with CBs and nucleolar localisation. Conclusions/Significance: Our data indicate that CBs and nucleolus are involved in the maturation of U1 snRNP. Difference
Abundance of Early Functional HIV-Specific CD8+ T Cells Does Not Predict AIDS-Free Survival Time
Background T-cell immunity is thought to play an important role in controlling HIV infection, and is a main target for HIV vaccine development. HIV-specific central memory CD8+ and CD4+ T cells producing IFNγ and IL-2 have been associated with control of viremia and are therefore hypothesized to be truly protective and determine subsequent clinical outcome. However, the cause-effect relationship between HIV-specific cellular immunity and disease progression is unknown. We investigated in a large prospective cohort study involving 96 individuals of the Amsterdam Cohort Studies with a known date of seroconversion whether the presence of cytokine-producing HIV-specific CD8+ T cells early in infection was associated with AIDS-free survival time. Methods and Findings The number and percentage of IFNγ and IL-2 producing CD8+ T cells was measured after in vitro stimulation with an overlapping Gag-peptide pool in T cells sampled approximately one year after seroconversion. Kaplan-Meier survival analysis and Cox proportional hazard models showed that frequencies of cytokine-producing Gag-specific CD8+ T cells (IFNγ, IL-2 or both) shortly after seroconversion were neither associated with time to AIDS nor with the rate of CD4+ T-cell decline. Conclusions These data show that high numbers of functional HIV-specific CD8+ T cells can be found early in HIV infection, irrespective of subsequent clinical outcome. The fact that both progressors and long-term non-progressors have abundant T cell immunity of the specificity associated with low viral load shortly after seroconversion suggests that the more rapid loss of T cell immunity observed in progressors may be a consequence rather than a cause of disease progression
Role of Cajal Bodies and Nucleolus in the Maturation of the U1 snRNP in Arabidopsis
Background: The biogenesis of spliceosomal snRNPs takes place in both the cytoplasm where Sm core proteins are added and snRNAs are modified at the 59 and 39 termini and in the nucleus where snRNP-specific proteins associate. U1 snRNP consists of U1 snRNA, seven Sm proteins and three snRNP-specific proteins, U1-70K, U1A, and U1C. It has been shown previously that after import to the nucleus U2 and U4/U6 snRNP-specific proteins first appear in Cajal bodies (CB) and then in splicing speckles. In addition, in cells grown under normal conditions U2, U4, U5, and U6 snRNAs/snRNPs are abundant in CBs. Therefore, it has been proposed that the final assembly of these spliceosomal snRNPs takes place in this nuclear compartment. In contrast, U1 snRNA in both animal and plant cells has rarely been found in this nuclear compartment. Methodology/Principal Findings: Here, we analysed the subnuclear distribution of Arabidopsis U1 snRNP-specific proteins fused to GFP or mRFP in transiently transformed Arabidopsis protoplasts. Irrespective of the tag used, U1-70K was exclusively found in the nucleus, whereas U1A and U1C were equally distributed between the nucleus and the cytoplasm. In the nucleus all three proteins localised to CBs and nucleoli although to different extent. Interestingly, we also found that the appearance of the three proteins in nuclear speckles differ significantly. U1-70K was mostly found in speckles whereas U1A and U1C in,90 % of cells showed diffuse nucleoplasmic in combination with CBs and nucleolar localisation. Conclusions/Significance: Our data indicate that CBs and nucleolus are involved in the maturation of U1 snRNP. Difference
- …
