6,114 research outputs found
Relaxation in the 3D ordered CoTAC spin chain by quantum nucleation of 0D domain walls
We have shown that resonant quantum tunnelling of the magnetisation (QTM),
until now observed only in 0D cluster systems (SMMs), occurs in the molecular
Ising spin chain, CoTAC ([(CH_3)_3NH]CoCl_3 - 2H_2O) which orders as a canted
3D-antiferromagnet at T_C=4.15 K. This effect was observed around a resonant
like field value of 1025 Oe. We present here measurements of the relaxation of
the magnetisation as a function of time, from the zero field cooled (ZFC)
antiferromagnet state and from the saturated ferromagnet state. We show that,
at the resonant field, the relaxation from the saturated state occurs in a
complicated process, whereas, surprisingly, in the case of the ZFC state, the
relaxation is exponential.Comment: 4 pages, 5 figures, LT25 proceeding
On the origin of \gamma-ray emission in \eta\ Carina
\eta\ Car is the only colliding-wind binary for which high-energy \gamma\
rays are detected. Although the physical conditions in the shock region change
on timescales of hours to days, the variability seen at GeV energies is weak
and on significantly longer timescales. The \gamma-ray spectrum exhibits two
features that can be interpreted as emission from the shocks on either side of
the contact discontinuity. Here we report on the first time-dependent modelling
of the non-thermal emission in \eta\ Car. We find that emission from primary
electrons is likely not responsible for the \gamma-ray emission, but
accelerated protons interacting with the dense wind material can explain the
observations. In our model, efficient acceleration is required at both shocks,
with the primary side acting as a hadron calorimeter, whilst on the companion
side acceleration is limited by the flow time out of the system, resulting in
changing acceleration conditions. The system therefore represents a unique
laboratory for the exploration of hadronic particle acceleration in
non-relativistic shocks.Comment: 5 pages, 4 figures, 1 table, accepted for publication in MNRAS
Letter
Some topological properties of halfgroupoids technical report no. 8
Some topological properties of halfgroupoid
Answer to the comment of Chudnovsky: On the square-root time relaxation in molecular nanomagnets
Answer to the comment of E. Chudnovsky concerning the following papers:
(1) N.V. Prokof'ev, P.C.E. Stamp, Phys. Rev. Lett.80, 5794 (1998).
(2) W. Wernsdorfer, T. Ohm, C. Sangregorio, R. Sessoli, D. Mailly, C.
Paulsen, Phys. Rev. Lett. 82, 3903 (1999).Comment: 1 page
H.E.S.S. observations of the Large Magellanic Cloud
The Large Magellanic Cloud (LMC) is a satellite galaxy of the Milky Way at a
distance of approximately 48 kpc. Despite its distance it harbours several
interesting targets for TeV gamma-ray observations. The composite supernova
remnant N 157B/PSR J05367-6910 was discovered by H.E.S.S. being an emitter of
very high energy (VHE) gamma-rays. It is the most distant pulsar wind nebula
ever detected in VHE gamma-rays. Another very exciting target is SN 1987A, the
remnant of the most recent supernova explosion that occurred in the
neighbourhood of the Milky Way. Models for Cosmic Ray acceleration in this
remnant predict gamma-ray emission at a level detectable by H.E.S.S. but this
has not been detected so far. Fermi/LAT discovered diffuse high energy (HE)
gamma-ray emission from the general direction of the massive star forming
region 30 Doradus but no clear evidence for emission from either N 157B or SN
1987A has been published. The part of the LMC containing these objects has been
observed regularly with the H.E.S.S. telescopes since 2003. With deep
observations carried out in 2010 a very good exposure of this part of the sky
has been obtained. The current status of the H.E.S.S. LMC observations is
reported along with new results on N 157B and SN 1987A.Comment: 4 pages, 3 figures, proceedings of the 32nd Internatioal Cosmic Ray
Conference, Beijing 201
Effect of dipolar interactions on the magnetization of a cubic array of nanomagnets
We investigated the effect of intermolecular dipolar interactions on a cubic
3D ensemble of 5X5X4=100 nanomagnets, each with spin . We employed the
Landau-Lifshitz-Gilbert equation to solve for the magnetization curves
for several values of the damping constant , the induction sweep rate,
the lattice constant , the temperature , and the magnetic anisotropy
field . We find that the smaller the , the stronger the maximum
induction required to produce hysteresis. The shape of the hysteresis loops
also depends on the damping constant. We find further that the system
magnetizes and demagnetizes at decreasing magnetic field strengths with
decreasing sweep rates, resulting in smaller hysteresis loops. Variations of
within realistic values (1.5 nm - 2.5 nm) show that the dipolar interaction
plays an important role in the magnetic hysteresis by controlling the
relaxation process. The dependencies of and of are presented
and discussed with regard to recent experimental data on nanomagnets.
enhances the size of the hysteresis loops for external fields parallel to the
anisotropy axis, but decreases it for perpendicular external fields. Finally,
we reproduce and test an curve for a 2D-system [M. Kayali and W. Saslow,
Phys. Rev. B {\bf 70}, 174404 (2004)]. We show that its hysteretic behavior is
only weakly dependent on the shape anisotropy field and the sweep rate, but
depends sensitively upon the dipolar interactions. Although in 3D systems,
dipole-dipole interactions generally diminish the hysteresis, in 2D systems,
they strongly enhance it. For both square 2D and rectangular 3D lattices with
, dipole-dipole interactions can cause
large jumps in the magnetization.Comment: 15 pages 14 figures, submitted to Phys. Rev.
Suppression of Quantum Phase Interference in Molecular Magnets Fe₈ with Dipolar-Dipolar Interaction
Renormalized tunnel splitting with a finite distribution in the biaxial spin
model for molecular magnets is obtained by taking into account the dipolar
interaction of enviromental spins. Oscillation of the resonant tunnel splitting
with a transverse magnetic field along the hard axis is smeared by the finite
distribution which subsequently affects the quantum steps of hysteresis curve
evaluated in terms of the modified Landau-Zener model of spin flipping induced
by the sweeping field. We conclude that the dipolar-dipolar interaction drives
decoherence of quantum tunnelling in molcular magnets Fe₈, which explains
why the quenching points of tunnel spliting between odd and even resonant
tunnelling predcited theoretically were not observed experimentally.Comment: 5 pages including 3 figure and 1 table. To appear in Physical Review
Nonlinear Dynamics of the Perceived Pitch of Complex Sounds
We apply results from nonlinear dynamics to an old problem in acoustical
physics: the mechanism of the perception of the pitch of sounds, especially the
sounds known as complex tones that are important for music and speech
intelligibility
Spin dynamics of Mn12-acetate in the thermally-activated tunneling regime: ac-susceptibility and magnetization relaxation
In this work, we study the spin dynamics of Mn12-acetate molecules in the
regime of thermally assisted tunneling. In particular, we describe the system
in the presence of a strong transverse magnetic field. Similar to recent
experiments, the relaxation time/rate is found to display a series of
resonances; their Lorentzian shape is found to stem from the tunneling. The
dynamic susceptibility is calculated starting from the microscopic
Hamiltonian and the resonant structure manifests itself also in .
Similar to recent results reported on another molecular magnet, Fe8, we find
oscillations of the relaxation rate as a function of the transverse magnetic
field when the field is directed along a hard axis of the molecules. This
phenomenon is attributed to the interference of the geometrical or Berry phase.
We propose susceptibility experiments to be carried out for strong transverse
magnetic fields to study of these oscillations and for a better resolution of
the sharp satellite peaks in the relaxation rates.Comment: 22 pages, 23 figures; submitted to Phys. Rev. B; citations/references
adde
- …
