13,730 research outputs found

    A rising cool column as signature for helical flux emergence and formation of prominence and coronal cavity

    Full text link
    Continuous observations were performed of a quiescent prominence with the Solar Optical Telescope (SOT) on board the /emph{Hinode} satellite on 2006 December 23--24. A peculiar slowly-rising column of /sim104/sim10^{4} K plasma develops from the lower atmosphere during the observations. The apparent ascent speed of the column is 2 km s1^{-1}, while the fine structures of the column exhibit much faster motion of up to 20 km s1^{-1}. The column eventually becomes a faint low-lying prominence. Associated with the appearance of the column, an overlying coronal cavity seen in the X-ray and EUV moves upward at /sim/sim5 km s1^{-1}. We discuss the relationship between these episodes, and suggest that they are due to the emergence of a helical flux rope that undergoes reconnection with lower coronal fields, possibly carrying material into the coronal cavity. Under the assumption of the emerging flux scenario, the lower velocity of 2 km s1^{-1} and the higher one of 20 km s1^{-1} in the column are attributed to the rising motion of the emerging flux and to the outflow driven by magnetic reconnection between the emerging flux and the pre-existing coronal field, respectively. The present paper gives a coherent explanation of the enigmatic phenomenon of the rising column with the emergence of the helical rope, and its effect on the corona. We discuss the implications that the emergence of such a helical rope has on the dynamo process in the convection zone.Comment: Accepted for publication in ApJ. 19 pages, 7 figures. 3 mpeg movies not included in astro-p

    A generalization of determinant formulas for the solutions of Painlev\'e II and XXXIV equations

    Full text link
    A generalization of determinant formulas for the classical solutions of Painlev\'e XXXIV and Painlev\'e II equations are constructed using the technique of Darboux transformation and Hirota's bilinear formalism. It is shown that the solutions admit determinant formulas even for the transcendental case.Comment: 20 pages, LaTeX 2.09(IOP style), submitted to J. Phys.

    Finite-size scaling of helix-coil transitions in poly-alanine studied by multicanonical simulations

    Full text link
    We report results from multicanonical simulations of poly-alanine. Homopolymers of up to 30 amino acids were considered and various thermodynamic quantities as a function of temperature calculated. We study the nature of the observed helix-coil transition and present estimates for critical exponents.Comment: to appear in J.Chem.Phys. (Jan 99

    On the Axisymmetric Force-Free Pulsar Magnetosphere

    Full text link
    We investigate the axisymmetric magnetosphere of an aligned rotating magnetic dipole surrounded by an ideal force-free plasma. We concentrate on the magnetic field structure around the point of intersection of the separatrix between the open and closed field-line regions and the equatorial plane. We first study the case where this intersection point is located at the Light Cylinder. We find that in this case the separatrix equilibrium condition implies that all the poloidal current must return to the pulsar in the open-field region, i.e., that there should be no finite current carried by the separatrix/equator current sheet. We then perform an asymptotic analysis of the pulsar equation near the intersection point and find a unique self-similar solution; however, a Light Surface inevitably emerges right outside the Light Cylinder. We then perform a similar analysis for the situation where the intersection point lies somewhere inside the Light Cylinder, in which case a finite current flowing along the separatrix and the equator is allowed. We find a very simple behavior in this case, characterized by a 90-degree angle between the separatrix and the equator and by finite vertical field in the closed-field region. Finally, we discuss the implications of our results for global numerical studies of pulsar magnetospheres.Comment: 31 pages, including 5 figure
    corecore