18 research outputs found
Far-infrared induced current in a ballistic channel -- potential barrier structure
We consider electron transport in a ballistic multi-mode channel structure in
the presence of a transversely polarized far-infrared (FIR) field. The channel
structure consists of a long resonance region connected to an adiabatic
widening with a potential barrier at the end. At frequencies that match the
mode energy separation in the resonance region we find distinct peaks in the
photocurrent, caused by Rabi oscillations in the mode population. For an
experimental situation in which the width of the channel is tunable via gates,
we propose a method for reconstructing the spectrum of propagating modes,
without having to use a tunable FIR source. With this method the change in the
spectrum as the gate voltage is varied can be monitored.Comment: Submitted to Phys. Rev.
RIS in Cellular Networks -- Challenges and Issues
Reconfigurable intelligent surface (RIS) has been suggested to be a key 6G
feature and was suggested to be considered as a study-item in both 3GPP
Releases 18 and 19. However, in both releases, it has been decided not to
continue with it as a study-item, and to leave it for possible future
specification. In this paper, we present the rationale for such a decision.
Particularly, we demonstrate the practical issues which may affect the
feasibility or usefulness of RIS in cellular networks, and present open
problems to be addressed before RIS can be used in practice. Moreover, we
compare the performance of RIS with network-controlled repeater, the node with
the most similar characteristics to RIS and which has been standardized in 3GPP
Release 18. Finally, different simulations are presented to evaluate the
performance of RIS-assisted networks.Comment: Submitted to IEEE Open Journal of Communications Societ
Coherent quantum transport in narrow constrictions in the presence of a finite-range longitudinally polarized time-dependent field
We have studied the quantum transport in a narrow constriction acted upon by
a finite-range longitudinally polarized time-dependent electric field. The
electric field induces coherent inelastic scatterings which involve both
intra-subband and inter-sideband transitions. Subsequently, the dc conductance
G is found to exhibit suppressed features. These features are recognized as the
quasi-bound-state (QBS) features which are associated with electrons making
transitions to the vicinity of a subband bottom, of which the density of states
is singular. Having valley-like instead of dip-like structures, these QBS
features are different from the G characteristics for constrictions acted upon
by a finite-range time-modulated potential. In addition, the subband bottoms in
the time-dependent electric field region are shifted upward by an energy
proportional to the square of the electric field and inversely proportional to
the square of the frequency. This effective potential barrier is originated
from the square of the vector potential and it leads to the interesting
field-sensitive QBS features. An experimental set-up is proposed for the
observation of these features.Comment: 8 pages, 4 figure
Coherent Far-Infrared Mode Pumping in Ballistic Electron Channels
The influence of a high frequency electromagnetic field on transport properties of ballistic electron channels is investigated theoretically. We are primarily concerned with submicron-width channels formed by split-gate depletion of a two-dimensional electron gas at a GaAs/AlGaAs heterostructure interface. The pronounced quantization in the transverse direction of such channels opens the possibility to manipulate propagating electrons by inducing transitions between transverse modes by means of electromagnetic fields. Our investigations are focused on resonant mode coupling effects in long channels, induced by monochromatic far-infrared (FIR) fields polarized in the transverse direction of the channel. Within a single-particle transmission approach we predict the developing of spatial oscillations in the population of transverse modes, on a length scale much longer than the de Broglie wavelength. These oscillations have their correspondence in Rabi oscillations in atomic and molecular beams and in many other phenomena which exploit the resonant behavior of a two-level system. Different arrangements for detecting and exploiting this non-equilibrium situation are examined. A constriction in the channel leads to a retardation and a possibility for reflection of excited modes, while a widening leads to an acceleration and a possibility for excited modes to pass potential barriers. Such mechanisms affect the transmission probability and therefore lead to a change in the conductance. Also photovoltaic effects are found which eliminates the need for an external power supply. In the long run one can imagine to exploit this pumping mechanism in applications such as tunable narrow-band detectors and frequency demodulators, or even in transistors to which both the power and clock is distributed globally from the FIR field
Coherent Far-Infrared Mode Pumping in Ballistic Electron Channels
The influence of a high frequency electromagnetic field on transport properties of ballistic electron channels is investigated theoretically. We are primarily concerned with submicron-width channels formed by split-gate depletion of a two-dimensional electron gas at a GaAs/AlGaAs heterostructure interface. The pronounced quantization in the transverse direction of such channels opens the possibility to manipulate propagating electrons by inducing transitions between transverse modes by means of electromagnetic fields. Our investigations are focused on resonant mode coupling effects in long channels, induced by monochromatic far-infrared (FIR) fields polarized in the transverse direction of the channel. Within a single-particle transmission approach we predict the developing of spatial oscillations in the population of transverse modes, on a length scale much longer than the de Broglie wavelength. These oscillations have their correspondence in Rabi oscillations in atomic and molecular beams and in many other phenomena which exploit the resonant behavior of a two-level system. Different arrangements for detecting and exploiting this non-equilibrium situation are examined. A constriction in the channel leads to a retardation and a possibility for reflection of excited modes, while a widening leads to an acceleration and a possibility for excited modes to pass potential barriers. Such mechanisms affect the transmission probability and therefore lead to a change in the conductance. Also photovoltaic effects are found which eliminates the need for an external power supply. In the long run one can imagine to exploit this pumping mechanism in applications such as tunable narrow-band detectors and frequency demodulators, or even in transistors to which both the power and clock is distributed globally from the FIR field
Coherent Far-Infrared Mode Pumping in Ballistic Electron Channels
The influence of a high frequency electromagnetic field on transport properties of ballistic electron channels is investigated theoretically. We are primarily concerned with submicron-width channels formed by split-gate depletion of a two-dimensional electron gas at a GaAs/AlGaAs heterostructure interface. The pronounced quantization in the transverse direction of such channels opens the possibility to manipulate propagating electrons by inducing transitions between transverse modes by means of electromagnetic fields. Our investigations are focused on resonant mode coupling effects in long channels, induced by monochromatic far-infrared (FIR) fields polarized in the transverse direction of the channel. Within a single-particle transmission approach we predict the developing of spatial oscillations in the population of transverse modes, on a length scale much longer than the de Broglie wavelength. These oscillations have their correspondence in Rabi oscillations in atomic and molecular beams and in many other phenomena which exploit the resonant behavior of a two-level system. Different arrangements for detecting and exploiting this non-equilibrium situation are examined. A constriction in the channel leads to a retardation and a possibility for reflection of excited modes, while a widening leads to an acceleration and a possibility for excited modes to pass potential barriers. Such mechanisms affect the transmission probability and therefore lead to a change in the conductance. Also photovoltaic effects are found which eliminates the need for an external power supply. In the long run one can imagine to exploit this pumping mechanism in applications such as tunable narrow-band detectors and frequency demodulators, or even in transistors to which both the power and clock is distributed globally from the FIR field
Electronically scanning beamformers based on ferroelectric technology
Basic properties and the potential of ferroelectrics for applications in electronically scanned beamformers are discussed. Low drive power consumption, relatively low losses, high speed, and the possibilities of realisation cost effective beamformers are the main advantages offered by ferroelectric technology. A brief review of ferroelectric scanning antennas is also given
