4 research outputs found

    The limited usefulness of real-time 3-dimensional echocardiography in obtaining normal reference ranges for right ventricular volumes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To obtain normal reference ranges and intraobserver variability for right ventricular (RV) volume indexes (VI) and ejection fraction (EF) from apical recordings with real-time 3-dimensional echocardiography (RT3DE), and similarly for RV area indexes (AI) and area fraction (AF) with 2-dimensional echocardiography (2DE).</p> <p>Methods</p> <p>166 participants; 79 males and 87 females aged between 29–79 years and considered free from clinical and subclinical cardiovascular disease. Normal ranges are defined as 95% reference values and reproducibility as coefficients of variation (CV) for repeated measurements.</p> <p>Results</p> <p>None of the apical recordings with RT3DE and 2DE included the RV outflow tract. Upper reference values were 62 ml/m<sup>2 </sup>for RV end-diastolic (ED) VI and 24 ml/m<sup>2 </sup>for RV end-systolic (ES) VI. Lower normal reference value for RVEF was 41%. The respective reference ranges were 17 cm<sup>2</sup>/m<sup>2 </sup>for RVEDAI, 11 cm<sup>2</sup>/m<sup>2 </sup>for RVESAI and 27% for RVAF. Males had higher upper normal values for RVEDVI, RVESVI and RVEDAI, and a lower limit than females for RVEF and RVAF. Weak but significant negative correlations between age and RV dimensions were found with RT3DE, but not with 2DE. CVs for repeated measurements ranged between 10% and 14% with RT3DE and from 5% to 14% with 2DE.</p> <p>Conclusion</p> <p>Although the normal ranges for RVVIs and RVAIs presented in this study reflect RV inflow tract dimensions only, the data presented may still be regarded as a useful tool in clinical practice, especially for RVEF and RVAF.</p

    Postsystolic shortening of ischemic myocardium: a mechanism of abnormal intraventricular filling

    Full text link
    Acute myocardial ischemia has been associated with abnormal filling patterns in the left ventricular (LV) apex. We hypothesized that this may in part be due to postsystolic shortening of ischemic apical segments, which leads to reversal of early diastolic apical flow. Fourteen open-chest anesthetized dogs were instrumented with micromanometers in the LV apex and left atrium and myocardial sonomicrometers in the anterior apical LV wall. Intraventricular filling by color Doppler and wall motion by strain Doppler echocardiography (SDE) were assessed from an apical view. Measurements were taken before and after 5 min of left anterior descending coronary artery (LAD) occlusion. In four dogs, we measured the pressure difference between the LV apex and outflow tract. At baseline, peak early diastolic flow velocities in the distal one-third of the LV were directed toward apex (9.2 ± 1.6 cm/s). After LAD occlusion, the velocities reversed (−2.3 ± 0.4 cm/s, P &lt; 0.01), indicating that blood was ejected from the apex toward the base during early filling. This interpretation was confirmed by wall motion analysis, which showed postsystolic shortening of apical myocardial segments. The postsystolic shortening represented 9.7 ± 1.7% ( P &lt; 0.01) and 14.2 ± 2.4% ( P &lt; 0.01) of end-diastolic segment length by SDE and sonomicrometry, respectively. Consistent with the velocity changes, we found reversal of the early diastolic pressure gradient from the LV apex to outflow tract. In the present model, acute LAD occlusion resulted in reversal of early diastolic apical flow, and this was attributed to postsystolic shortening of dyskinetic apical segments. The clinical diagnostic importance of this finding remains to be determined. </jats:p
    corecore