620 research outputs found

    The enlargement of the Suez Canal and introduction of non-indigenous species to the Mediterranean Sea

    Get PDF
    The Suez Canal is one of the most important waterways in the world – during the last year 17,148 ships passed through the Canal – reducing emissions, saving time, and operating costs to shippers. The rapid increase in ship size from the “Post-Suezmax” (> 12,000 TEU) to the latest container vessels (> 19,000 TEU) now requires enlargements of port facilities and canals. A project of this magnitude, and with potentially negative environmental outcomes, requires a transparent and scientifically sound “Environmental Impact Assessment” (EIA). An explicit obligation on Parties to the Convention on Biological Diversity (https://www.cbd.int/doc/ legal/cbd-en.pdf) was made to consider transboundary impacts on biodiversity, particularly those associated with invasive non-indigenous species

    Classification of non-indigenous species based on their impacts: Considerations for application in marine management

    Get PDF
    Assessment of the ecological and economic/societal impacts of the introduction of non-indigenous species (NIS) is one of the primary focus areas of bioinvasion science in terrestrial and aquatic environments, and is considered essential to management. A classification system of NIS, based on the magnitude of their environmental impacts, was recently proposed to assist management. Here, we consider the potential application of this classification scheme to the marine environment, and offer a complementary framework focussing on value sets in order to explicitly address marine management concerns. Since existing data on marine NIS impacts are scarce and successful marine removals are rare, we propose that management of marine NIS adopt a precautionary approach, which not only would emphasise preventing new incursions through pre-border and at-border controls but also should influence the categorisation of impacts. The study of marine invasion impacts requires urgent attention and significant investment, since we lack the luxury of waiting for the knowledge base to be acquired before the window of opportunity closes for feasible management

    Scientific Support to the European Commission on the Marine Strategy Framework Directive - Management Group Report

    Get PDF
    The Marine Strategy Framework Directive (2008/56/EC) (MSFD) requires that the European Commis-sion (by 15 July 2010) should lay down criteria and methodological standards to allow consistency in approach in evaluating the extent to which Good Environmental Status (GES) is being achieved. ICES and JRC were contracted to provide scientific support for the Commission in meeting this obligation. A total of 10 reports have been prepared relating to the descriptors of GES listed in Annex I of the Directive. Eight reports have been prepared by groups of independent experts coordinated by JRC and ICES in response to this contract. In addition, reports for two descriptors (Contaminants in fish and other seafood and Marine Litter) were written by expert groups coordinated by DG SANCO and IFREMER respectively. A Task Group was established for each of the qualitative Descriptors. Each Task Group consisted of selected experts providing experience related to the four marine regions (the Baltic Sea, the North-east Atlantic, the Mediterranean Sea and the Black Sea) and an appropriate scope of relevant scien-tific expertise. Observers from the Regional Seas Conventions were also invited to each Task Group to help ensure the inclusion of relevant work by those Conventions. This is the report of the MSFD Management Group.JRC.DDG.H.5-Rural, water and ecosystem resource

    Spiral Attractors in a Reduced Mean-Field Model of Neuron-Glial Interaction

    Full text link
    It is well known that bursting activity plays an important role in the processes of transmission of neural signals. In terms of population dynamics, macroscopic bursting can be described using a mean-field approach. Mean field theory provides a useful tool for analysis of collective behavior of a large populations of interacting units, allowing to reduce the description of corresponding dynamics to just a few equations. Recently a new phenomenological model was proposed that describes bursting population activity of a big group of excitatory neurons, taking into account short-term synaptic plasticity and the astrocytic modulation of the synaptic dynamics [1]. The purpose of the present study is to investigate various bifurcation scenarios of the appearance of bursting activity in the phenomenological model. We show that the birth of bursting population pattern can be connected both with the cascade of period doubling bifurcations and further development of chaos according to the Shilnikov scenario, which leads to the appearance of a homoclinic attractor containing a homoclinic loop of a saddle-focus equilibrium with the two-dimensional unstable invariant manifold. We also show that the homoclinic spiral attractors observed in the system under study generate several types of bursting activity with different properties.Comment: 25 pages, 8 figure
    corecore