4 research outputs found
Estenose na artéria renal: a necessidade de validação dos critérios diagnósticos no laboratório vascular
Uso da sulfadiazina de prata associada ao nitrato de cério em úlceras venosas: relato de dois casos
Anisotropic larval connectivity and metapopulation structure driven by directional oceanic currents in a marine fish targeted by small-scale fisheries
The dispersal during the planktonic larval period is a key feature to understand the metapopulation structure of marine fishes, and is commonly described by four general models: (1) lack of population structure due to extensive larval dispersal; (2) isolation by geographic distance, where larval connectivity decreases with increasing distance between sites in all directions (isotropy); (3) population structure without any clear geographic trend (chaotic); and (4) population structure explained by seascape approaches that explicitly incorporate the spatial and temporal variations in the direction and strength of oceanic currents via oceanographic modeling. We tested the four models in the Pacific red snapper Lutjanus peru, a key commercial species in the Gulf of California (GC), Mexico. We genotyped 15 microsatellite loci in 225 samples collected during 20152016 from 8 sites, and contrasted the observed empirical genetic patterns against predictions from each model. We found low but significant levels of population structure among sites. Only the seascape approach was able to significantly explain levels of genetic structure and diversity, but exclusively within spring and summer, suggesting that this period represents the spawning season for L. peru. We showed that in the GC, the strong asymmetry in the oceanic currents causes larval connectivity to show different values when measured in distinct directions (anisotropy). Management tools, including marine reserves, could be more effective if placed upstream of the predominant flow. Managers should consider that oceanographic distances describing the direction and intensity of currents during the spawning period are significant predictors of larval connectivity between sites, as opposed to geographic distances.CONACYT fellowship [250126]; Walton Family Foundation [2011-1235]; David and Lucile Packard Foundation [2013-39359, 2013-39400, 2015-62798]; Fondo Institucional CONACYT-Fronteras de la Ciencia [26/2016]12 month embargo; published online: 22 November 2017This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
