8,663 research outputs found
Pyrolysis kinetics of hydrochars produced from brewer’s spent grains
The current market situation shows that large quantities of the brewer's spent grains (BSG)-the leftovers from the beer productions-are not fully utilized as cattle feed. The untapped BSG is a promising feedstock for cheap and environmentally friendly production of carbonaceous materials in thermochemical processes like hydrothermal carbonization (HTC) or pyrolysis. The use of a singular process results in the production of inappropriate material (HTC) or insufficient economic feasibility (pyrolysis), which hinders their application on a larger scale. The coupling of both processes can create synergies and allow the mentioned obstacles to be overcome. To investigate the possibility of coupling both processes, we analyzed the thermal degradation of raw BSG and BSG-derived hydrochars and assessed the solid material yield from the singular as well as the coupled processes. This publication reports the non-isothermal kinetic parameters of pyrolytic degradation of BSG and derived hydrochars produced in three different conditions (temperature-retention time). It also contains a summary of their pyrolytic char yield at four different temperatures. The obtained KAS (Kissinger-Akahira-Sunose) average activation energy was 285, 147, 170, and 188 kJ mol(-1) for BSG, HTC-180-4, HTC-220-2, and HTC-220-4, respectively. The pyrochar yield for all hydrochar cases was significantly higher than for BSG, and it increased with the severity of the HTC's conditions. The results reveal synergies resulting from coupling both processes, both in the yield and the reduction of the thermal load of the conversion process. According to these promising results, the coupling of both conversion processes can be beneficial. Nevertheless, drying and overall energy efficiency, as well as larger scale assessment, still need to be conducted to fully confirm the concept
NGC 1866: First Spectroscopic Detection of Fast Rotating Stars in a Young LMC Cluster
High-resolution spectroscopic observations were taken of 29 extended main
sequence turn-off (eMSTO) stars in the young (200 Myr) LMC cluster, NGC
1866 using the Michigan/Magellan Fiber System and MSpec spectrograph on the
Magellan-Clay 6.5-m telescope. These spectra reveal the first direct detection
of rapidly rotating stars whose presence has only been inferred from
photometric studies. The eMSTO stars exhibit H-alpha emission (indicative of
Be-star decretion disks), others have shallow broad H-alpha absorption
(consistent with rotation 150 km s), or deep H-alpha core
absorption signaling lower rotation velocities (150 km s ).
The spectra appear consistent with two populations of stars - one rapidly
rotating, and the other, younger and slowly rotating.Comment: 9 pages, 4 figures, Accepted for publication in ApJ Letter
Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV: Measurement for Sculptor
This article presents a measurement of the proper motion of the Sculptor
dwarf spheroidal galaxy determined from images taken with the Hubble Space
Telescope using the Space Telescope Imaging Spectrograph in the imaging mode.Comment: 38 pages, 15 figures, 6 tables, Accepted for publication in AJ, March
200
Vertex Reconstruction Using a Single Layer Silicon Detector
Typical vertex finding algorithms use reconstructed tracks, registered in a
multi-layer detector, which directly point to the common point of origin. A
detector with a single layer of silicon sensors registers the passage of
primary particles only in one place. Nevertheless, the information available
from these hits can also be used to estimate the vertex position, when the
geometrical properties of silicon sensors and the measured ionization energy
losses of the particles are fully exploited. In this paper the algorithm used
for this purpose in the PHOBOS experiment is described. The vertex
reconstruction performance is studied using simulations and compared with
results obtained from real data. The very large acceptance of a single-layered
multiplicity detector permits vertex reconstruction for low multiplicity events
where other methods, using small acceptance subdetectors, fail because of
insufficient number of registered primary tracks.Comment: accepted for publication in Nucl. Instr. Meth.
A Comprehensive Archival Search for Counterparts to Ultra-Compact High Velocity Clouds: Five Local Volume Dwarf Galaxies
We report five Local Volume dwarf galaxies (two of which are presented here
for the first time) uncovered during a comprehensive archival search for
optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC
population of HI clouds are thought to be candidate gas-rich, low mass halos at
the edge of the Local Group and beyond, but no comprehensive search for stellar
counterparts to these systems has been presented. Careful visual inspection of
all publicly available optical and ultraviolet imaging at the position of the
UCHVCs revealed six blue, diffuse counterparts with a morphology consistent
with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all
six candidate dwarf counterparts show that five have an H-derived
velocity consistent with the coincident HI cloud, confirming their association,
the sixth diffuse counterpart is likely a background object. The size and
luminosity of the UCHVC dwarfs is consistent with other known Local Volume
dwarf irregular galaxies. The gas fraction () of the five
dwarfs are generally consistent with that of dwarf irregular galaxies in the
Local Volume, although ALFALFA-Dw1 (associated with ALFALFA UCHVC
HVC274.68+74.70123) has a very high 40. Despite the
heterogenous nature of our search, we demonstrate that the current dwarf
companions to UCHVCs are at the edge of detectability due to their low surface
brightness, and that deeper searches are likely to find more stellar systems.
If more sensitive searches do not reveal further stellar counterparts to
UCHVCs, then the dearth of such systems around the Local Group may be in
conflict with CDM simulations.Comment: 18 pages, 4 tables, 4 figures, ApJ Accepte
Language and Compiler Support for Auto-Tuning Variable-Accuracy Algorithms
Approximating ideal program outputs is a common technique for solving computationally difficult problems, for adhering to processing or timing constraints, and for performance optimization in situations where perfect precision is not necessary. To this end, programmers often use approximation algorithms, iterative methods, data resampling, and other heuristics. However, programming such variable accuracy algorithms presents difficult challenges since the optimal algorithms and parameters may change with different accuracy requirements and usage environments. This problem is further compounded when multiple variable accuracy algorithms are nested together due to the complex way that accuracy requirements can propagate across algorithms and because of the size of the set of allowable compositions. As a result, programmers often deal with this issue in an ad-hoc manner that can sometimes violate sound programming practices such as maintaining library abstractions. In this paper, we propose language extensions that expose trade-offs between time and accuracy to the compiler. The compiler performs fully automatic compile-time and installtime autotuning and analyses in order to construct optimized algorithms to achieve any given target accuracy. We present novel compiler techniques and a structured genetic tuning algorithm to search the space of candidate algorithms and accuracies in the presence of recursion and sub-calls to other variable accuracy code. These techniques benefit both the library writer, by providing an easy way to describe and search the parameter and algorithmic choice space, and the library user, by allowing high level specification of accuracy requirements which are then met automatically without the need for the user to understand any algorithm-specific parameters. Additionally, we present a new suite of benchmarks, written in our language, to examine the efficacy of our techniques. Our experimental results show that by relaxing accuracy requirements , we can easily obtain performance improvements ranging from 1.1× to orders of magnitude of speedup
Investment under ambiguity with the best and worst in mind
Recent literature on optimal investment has stressed the difference between the impact of risk and the impact of ambiguity - also called Knightian uncertainty - on investors' decisions. In this paper, we show that a decision maker's attitude towards ambiguity is similarly crucial for investment decisions. We capture the investor's individual ambiguity attitude by applying alpha-MEU preferences to a standard investment problem. We show that the presence of ambiguity often leads to an increase in the subjective project value, and entrepreneurs are more eager to invest. Thereby, our investment model helps to explain differences in investment behavior in situations which are objectively identical
- …
