187 research outputs found
Recommended from our members
Emerging La Niña conditions in the equatorial Pacific : notes for the health community
This report provides information to assist monitoring of vulnerable communities and provide time sensitive information for interventions to reduce negative health impacts. It is prudent for health decision makers to follow the situation for any developments and monitor climate/weather forecasts as part of an early warning-early action approach. Resources and recommendations for monitoring the situation are presented
Recommended from our members
Raised temperatures over the Kericho Tea Estates: revisiting the climate in the East African highlands malaria debate: Supplemental Information
Supplemental information to a study examining a time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, for the 30-year period 1 January 1979 to 31 December 2009
Recommended from our members
Web-based climate information resources for malaria control in Africa
Malaria remains a major public health threat to more than 600 million Africans and its control is recognized as critical to achieving the Millennium Development Goals. The greatest burden of malaria in Africa occurs in the endemic regions where the disease pathogen is continuously present in the community. These regions are characterized by an environment that is conducive to interactions between the Anopheles mosquito, malaria parasites and human hosts, as well as housing of generally poor quality, which offers little protection from mosquito-human contact. Epidemic malaria tends to occur along the geographical margins of endemic regions, when the equilibrium between the human, parasite and mosquito vector populations is occasionally disturbed and a sharp but temporary increase in disease incidence results. When malaria control measures are inadequate, as is the case in much of sub-Saharan Africa, the disease distribution is closely linked with seasonal patterns of the climate and local environment. In the absence of good epidemiological data on malaria distribution in Africa, climate information has long been used to develop malaria risk maps that illustrate the boundaries of 'climatic suitability for endemic transmission.' The best known of these are produced by the Pan-African-based MARA Collaboration. This paper describes the development of additional malaria suitability maps which have been produced in an online, interactive format to enable temporal information (i.e., seasonality of climate conditions) to be queried and displayed along with spatial information. These maps and the seasonal information that they contain should be useful to the malaria control and health service communities for their planning and operational activities
Recommended from our members
INAP Report #2 - Vulnerability Analysis
Ms. Viviana Ceron, consultant at the INS for the INAP project, visited the IRI in June, 2008. During her visit she participated in the IRI’s Summer Institute on Climate information for Public Health applications. The baseline surveys for the INAP study areas were completed by this time and Ms. Ceron had the opportunity to discuss some results of the descriptive analyses with colleagues at the IRI. The comments presented in this report were discussed with Ms. Ceron during 2 visits to the IRI and also during monthly teleconference calls between the IRI and the INAP team during 2009
Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate
<p>Abstract</p> <p>Background</p> <p>Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region.</p> <p>Methods</p> <p>Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed.</p> <p>Results</p> <p>An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations.</p> <p>Conclusion</p> <p>This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard.</p
Planning for compound hazards during the COVID-19 pandemic: The role of climate information systems
Roundtable on Compound Hazards and COVID-19
What:
An online panel with leading experts in compound hazard research, preparedness, and response, attended by over 80 online participants, met to discuss hazard response in the context of COVID-19.
When:
30 June 2021
Where:
Online, convened by the World Meteorological Organization and hosted by the American Geophysical UnionPeer Reviewed"Article signat per 12 autors/es: Benjamin F. Zaitchik, Judy Omumbo, Rachel Lowe, Maarten van Aalst, Liana O. Anderson, Erich Fischer, Charlotte Norman, Joanne Robbins, Rosa Barciela, Juli Trtanj, Rosa von Borries, and Jürg Luterbacher"Postprint (published version
Recommended from our members
Testing a multi-malaria-model ensemble against 30 years of data in the Kenyan highlands
Background: Multi-model ensembles could overcome challenges resulting from uncertainties in models’ initial conditions, parameterization and structural imperfections. They could also quantify in a probabilistic way uncertainties in future climatic conditions and their impacts. Methods: A four-malaria-model ensemble was implemented to assess the impact of long-term changes in climatic conditions on Plasmodium falciparum malaria morbidity observed in Kericho, in the highlands of Western Kenya, over the period 1979–2009. Input data included quality controlled temperature and rainfall records gathered at a nearby weather station over the historical periods 1979–2009 and 1980–2009, respectively. Simulations included models’ sensitivities to changes in sets of parameters and analysis of non-linear changes in the mean duration of host’s infectivity to vectors due to increased resistance to anti-malarial drugs. Results: The ensemble explained from 32 to 38% of the variance of the observed P. falciparum malaria incidence. Obtained R2-values were above the results achieved with individual model simulation outputs. Up to 18.6% of the variance of malaria incidence could be attributed to the +0.19 to +0.25°C per decade significant long-term linear trend in near-surface air temperatures. On top of this 18.6%, at least 6% of the variance of malaria incidence could be related to the increased resistance to anti-malarial drugs. Ensemble simulations also suggest that climatic conditions have likely been less favourable to malaria transmission in Kericho in recent years. Conclusions: Long-term changes in climatic conditions and non-linear changes in the mean duration of host’s infectivity are synergistically driving the increasing incidence of P. falciparum malaria in the Kenyan highlands. User-friendly, online-downloadable, open source mathematical tools, such as the one presented here, could improve decision-making processes of local and regional health authorities
Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project.
BACKGROUND: Open access to databases of information generated by the research community can synergize individual efforts and are epitomized by the genome mapping projects. Open source models for outputs of scientific research funded by tax-payers and charities are becoming the norm. This has yet to be extended to malaria epidemiology and control. METHODS: The exhaustive searches and assembly process for a global database of malaria parasite prevalence as part of the Malaria Atlas Project (MAP) are described. The different data sources visited and how productive these were in terms of availability of parasite rate (PR) data are presented, followed by a description of the methods used to assemble a relational database and an associated geographic information system. The challenges facing spatial data assembly from varied sources are described in an effort to help inform similar future applications. RESULTS: At the time of writing, the MAP database held 3,351 spatially independent PR estimates from community surveys conducted since 1985. These include 3,036 Plasmodium falciparum and 1,347 Plasmodium vivax estimates in 74 countries derived from 671 primary sources. More than half of these data represent malaria prevalence after the year 2000. CONCLUSION: This database will help refine maps of the global spatial limits of malaria and be the foundation for the development of global malaria endemicity models as part of MAP. A widespread application of these maps is envisaged. The data compiled and the products generated by MAP are planned to be released in June 2009 to facilitate a more informed approach to global malaria control
Recommended from our members
Environmental Data and Surveillance
An overview of the IRI Data Library
- …
