13 research outputs found

    Previous immune checkpoint inhibitor therapy is associated with decreased COVID-19-related hospitalizations and complications in patients with cancer: Results of a propensity-matched analysis of the OnCovid registry.

    Get PDF
    Objectives: To date, studies have not provided definitive answers regarding whether previous immune checkpoint inhibitor (ICI) treatment alters outcomes for cancer patients with COVID-19. Methods: The OnCovid registry (NCT04393974) was searched from February 27, 2020, to January 31, 2022, for patients who received systemic anti-cancer therapy in the 4 weeks before laboratory-confirmed COVID-19 diagnosis. Propensity-score matching using country, vaccination status, primary tumor type, sex, age, comorbidity burden, tumor stage, and remission status investigated differences in predefined clinical outcomes comparing those who had or had not received ICIs. Results: Of 3523 patients screened, 137 ICI-only and 1378 non-ICI met inclusion criteria. Before matching, ICI patients were older, male, enrolled at centers in Italy, and had histories of smoking, thoracic cancers, advanced cancer stages, and active malignancies (P ≤0.02). After matching, there were 120 ICI and 322 non-ICI patients. ICI patients had no differences (odds ratio: 95% CI) in presenting COVID-19 symptoms (0.69: 0.37-1.28), receipt of COVID-specific therapy (0.88: 0.54-1.41), 14-day (0.95: 0.56-1.61), or 28-day (0.79: 0.48-1.29) mortalities. However, ICI patients required less COVID-19-related hospitalization (0.37: 0.21-0.67) and oxygen therapy (0.51: 0.31-0.83) and developed fewer complications (0.57: 0.36-0.92). Conclusion: In this propensity-score matched analysis, previous ICI therapy did not worsen and potentially improved COVID-19 outcomes in patients with cancer

    Systemic pro-inflammatory response identifies patients with cancer with adverse outcomes from SARS-CoV-2 infection: the OnCovid Inflammatory Score

    Get PDF
    BACKGROUND: Patients with cancer are particularly susceptible to SARS-CoV-2 infection. The systemic inflammatory response is a pathogenic mechanism shared by cancer progression and COVID-19. We investigated systemic inflammation as a driver of severity and mortality from COVID-19, evaluating the prognostic role of commonly used inflammatory indices in SARS-CoV-2-infected patients with cancer accrued to the OnCovid study. METHODS: In a multicenter cohort of SARS-CoV-2-infected patients with cancer in Europe, we evaluated dynamic changes in neutrophil:lymphocyte ratio (NLR); platelet:lymphocyte ratio (PLR); Prognostic Nutritional Index (PNI), renamed the OnCovid Inflammatory Score (OIS); modified Glasgow Prognostic Score (mGPS); and Prognostic Index (PI) in relation to oncological and COVID-19 infection features, testing their prognostic potential in independent training (n=529) and validation (n=542) sets. RESULTS: We evaluated 1071 eligible patients, of which 625 (58.3%) were men, and 420 were patients with malignancy in advanced stage (39.2%), most commonly genitourinary (n=216, 20.2%). 844 (78.8%) had ≥1 comorbidity and 754 (70.4%) had ≥1 COVID-19 complication. NLR, OIS, and mGPS worsened at COVID-19 diagnosis compared with pre-COVID-19 measurement (p<0.01), recovering in survivors to pre-COVID-19 levels. Patients in poorer risk categories for each index except the PLR exhibited higher mortality rates (p<0.001) and shorter median overall survival in the training and validation sets (p<0.01). Multivariable analyses revealed the OIS to be most independently predictive of survival (validation set HR 2.48, 95% CI 1.47 to 4.20, p=0.001; adjusted concordance index score 0.611). CONCLUSIONS: Systemic inflammation is a validated prognostic domain in SARS-CoV-2-infected patients with cancer and can be used as a bedside predictor of adverse outcome. Lymphocytopenia and hypoalbuminemia as computed by the OIS are independently predictive of severe COVID-19, supporting their use for risk stratification. Reversal of the COVID-19-induced proinflammatory state is a putative therapeutic strategy in patients with cancer

    Determinants of enhanced vulnerability to coronavirus disease 2019 in UK patients with cancer: a European study

    Get PDF
    Despite high contagiousness and rapid spread, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to heterogeneous outcomes across affected nations. Within Europe (EU), the United Kingdom (UK) is the most severely affected country, with a death toll in excess of 100,000 as of January 2021. We aimed to compare the national impact of coronavirus disease 2019 (COVID-19) on the risk of death in UK patients with cancer versus those in continental EU. Methods: We performed a retrospective analysis of the OnCovid study database, a European registry of patients with cancer consecutively diagnosed with COVID-19 in 27 centres from 27th February to 10th September 2020. We analysed case fatality rates and risk of death at 30 days and 6 months stratified by region of origin (UK versus EU). We compared patient characteristics at baseline including oncological and COVID-19-specific therapy across UK and EU cohorts and evaluated the association of these factors with the risk of adverse outcomes in multivariable Cox regression models. Findings: Compared with EU (n = 924), UK patients (n = 468) were characterised by higher case fatality rates (40.38% versus 26.5%, p < 0.0001) and higher risk of death at 30 days (hazard ratio [HR], 1.64 [95% confidence interval {CI}, 1.36-1.99]) and 6 months after COVID-19 diagnosis (47.64% versus 33.33%; p < 0.0001; HR, 1.59 [95% CI, 1.33-1.88]). UK patients were more often men, were of older age and have more comorbidities than EU counterparts (p < 0.01). Receipt of anticancer therapy was lower in UK than in EU patients (p < 0.001). Despite equal proportions of complicated COVID-19, rates of intensive care admission and use of mechanical ventilation, UK patients with cancer were less likely to receive anti-COVID-19 therapies including corticosteroids, antivirals and interleukin-6 antagonists (p < 0.0001). Multivariable analyses adjusted for imbalanced prognostic factors confirmed the UK cohort to be characterised by worse risk of death at 30 days and 6 months, independent of the patient's age, gender, tumour stage and status; number of comorbidities; COVID-19 severity and receipt of anticancer and anti-COVID-19 therapy. Rates of permanent cessation of anticancer therapy after COVID-19 were similar in the UK and EU cohorts. Interpretation: UK patients with cancer have been more severely impacted by the unfolding of the COVID-19 pandemic despite societal risk mitigation factors and rapid deferral of anticancer therapy. The increased frailty of UK patients with cancer highlights high-risk groups that should be prioritised for anti-SARS-CoV-2 vaccination. Continued evaluation of long-term outcomes is warranted

    Systemic pro-inflammatory response identifies patients with cancer with adverse outcomes from SARS-CoV-2 infection: the OnCovid Inflammatory Score

    Get PDF
    Background: Cancer patients are particularly susceptible to SARS-CoV-2 infection. The systemic inflammatory response is a pathogenic mechanism shared by cancer progression and Covid-19. We investigated systemic inflammation as a driver of severity and mortality from Covid-19, evaluating the prognostic role of commonly utilized inflammatory indices in SARS-CoV-2-infected cancer patients accrued to the OnCovid study. Methods: In a multi-center cohort of SARS-CoV-2-infected cancer patients in Europe, we evaluated dynamic changes in neutrophil-lymphocyte ratio (NLR); platelet-lymphocyte ratio (PLR); prognostic nutritional index (PNI), renamed the OnCovid Inflammatory Score (OIS); modified Glasgow prognostic score (mGPS); and prognostic index (PI) in relationship to oncological and Covid-19 infection features, testing their prognostic potential in independent training (n=529) and validation (n=542) sets. Results: We evaluated 1,071 eligible patients: 625 (58.3%) males, 420 with malignancy in advanced stage (39.2%), most commonly genitourinary (n=216, 20.2%). 844 (78.8%) had ≥1 comorbidity and 754 (70.4%) ≥1 Covid-19 complication. NLR, OIS, and mGPS worsened at Covid-19 diagnosis compared to pre-Covid-19 measurement (P<0.01), recovering in survivors to pre-Covid-19 levels. Patients in poorer risk categories for each index except the PLR exhibited higher mortality rates (P<0.001) and shorter median overall survival in the training and validation sets (P<0.01). Multivariable analyses revealed the OIS to be most independently predictive of survival (validation set HR 2.48, 95% CI 1.47 – 4.20, P=0.001; adjusted C-index 0.611). Conclusions: Systemic inflammation is a validated prognostic domain in SARS-CoV-2-infected cancer patients and can be utilized as a bedside predictor of adverse outcome. Lymphocytopenia and hypoalbuminemia as computed by the OIS are independently predictive of severe Covid-19, supporting their use for risk stratification. Reversal of the Covid-19-induced pro-inflammatory state is a putative therapeutic strategy in patients with cancer

    Systemic pro-inflammatory response identifies cancer patients with adverse outcomes from SARS-CoV-2 infection: the OnCovid inflammatory score

    Get PDF
    Background Patients with cancer are particularly susceptible to SARS-CoV-2 infection. The systemic inflammatory response is a pathogenic mechanism shared by cancer progression and COVID-19. We investigated systemic inflammation as a driver of severity and mortality from COVID-19, evaluating the prognostic role of commonly used inflammatory indices in SARS-CoV-2-infected patients with cancer accrued to the OnCovid study. Methods In a multicenter cohort of SARS-CoV-2-infected patients with cancer in Europe, we evaluated dynamic changes in neutrophil:lymphocyte ratio (NLR); platelet:lymphocyte ratio (PLR); Prognostic Nutritional Index (PNI), renamed the OnCovid Inflammatory Score (OIS); modified Glasgow Prognostic Score (mGPS); and Prognostic Index (PI) in relation to oncological and COVID-19 infection features, testing their prognostic potential in independent training (n=529) and validation (n=542) sets. Results We evaluated 1071 eligible patients, of which 625 (58.3%) were men, and 420 were patients with malignancy in advanced stage (39.2%), most commonly genitourinary (n=216, 20.2%). 844 (78.8%) had ≥1 comorbidity and 754 (70.4%) had ≥1 COVID-19 complication. NLR, OIS, and mGPS worsened at COVID-19 diagnosis compared with pre-COVID-19 measurement (p<0.01), recovering in survivors to pre-COVID-19 levels. Patients in poorer risk categories for each index except the PLR exhibited higher mortality rates (p<0.001) and shorter median overall survival in the training and validation sets (p<0.01). Multivariable analyses revealed the OIS to be most independently predictive of survival (validation set HR 2.48, 95% CI 1.47 to 4.20, p=0.001; adjusted concordance index score 0.611). Conclusions Systemic inflammation is a validated prognostic domain in SARS-CoV-2-infected patients with cancer and can be used as a bedside predictor of adverse outcome. Lymphocytopenia and hypoalbuminemia as computed by the OIS are independently predictive of severe COVID-19, supporting their use for risk stratification. Reversal of the COVID-19-induced proinflammatory state is a putative therapeutic strategy in patients with cancer

    Previous immune checkpoint inhibitor therapy is associated with decreased COVID-19-related hospitalizations and complications in patients with cancer: Results of a propensity-matched analysis of the OnCovid registry

    Get PDF
    Objectives: To date, studies have not provided definitive answers regarding whether previous immune checkpoint inhibitor (ICI) treatment alters outcomes for cancer patients with COVID-19. Methods: The OnCovid registry (NCT04393974) was searched from February 27, 2020, to January 31, 2022, for patients who received systemic anti-cancer therapy in the 4 weeks before laboratory-confirmed COVID-19 diagnosis. Propensity-score matching using country, vaccination status, primary tumor type, sex, age, comorbidity burden, tumor stage, and remission status investigated differences in predefined clinical outcomes comparing those who had or had not received ICIs. Results: Of 3523 patients screened, 137 ICI-only and 1378 non-ICI met inclusion criteria. Before matching, ICI patients were older, male, enrolled at centers in Italy, and had histories of smoking, thoracic cancers, advanced cancer stages, and active malignancies (P ≤0.02). After matching, there were 120 ICI and 322 non-ICI patients. ICI patients had no differences (odds ratio: 95% CI) in presenting COVID-19 symptoms (0.69: 0.37-1.28), receipt of COVID-specific therapy (0.88: 0.54-1.41), 14-day (0.95: 0.56-1.61), or 28-day (0.79: 0.48-1.29) mortalities. However, ICI patients required less COVID-19-related hospitalization (0.37: 0.21-0.67) and oxygen therapy (0.51: 0.31-0.83) and developed fewer complications (0.57: 0.36-0.92). Conclusion: In this propensity-score matched analysis, previous ICI therapy did not worsen and potentially improved COVID-19 outcomes in patients with cancer

    Previous immune checkpoint inhibitor therapy is associated with decreased COVID-19-related hospitalizations and complications in patients with cancer: Results of a propensity-matched analysis of the OnCovid registry.

    No full text
    Objectives: To date, studies have not provided definitive answers regarding whether previous immune checkpoint inhibitor (ICI) treatment alters outcomes for cancer patients with COVID-19. Methods: The OnCovid registry (NCT04393974) was searched from February 27, 2020, to January 31, 2022, for patients who received systemic anti-cancer therapy in the 4 weeks before laboratory-confirmed COVID-19 diagnosis. Propensity-score matching using country, vaccination status, primary tumor type, sex, age, comorbidity burden, tumor stage, and remission status investigated differences in predefined clinical outcomes comparing those who had or had not received ICIs. Results: Of 3523 patients screened, 137 ICI-only and 1378 non-ICI met inclusion criteria. Before matching, ICI patients were older, male, enrolled at centers in Italy, and had histories of smoking, thoracic cancers, advanced cancer stages, and active malignancies (P ≤0.02). After matching, there were 120 ICI and 322 non-ICI patients. ICI patients had no differences (odds ratio: 95% CI) in presenting COVID-19 symptoms (0.69: 0.37-1.28), receipt of COVID-specific therapy (0.88: 0.54-1.41), 14-day (0.95: 0.56-1.61), or 28-day (0.79: 0.48-1.29) mortalities. However, ICI patients required less COVID-19-related hospitalization (0.37: 0.21-0.67) and oxygen therapy (0.51: 0.31-0.83) and developed fewer complications (0.57: 0.36-0.92). Conclusion: In this propensity-score matched analysis, previous ICI therapy did not worsen and potentially improved COVID-19 outcomes in patients with cancer

    Vaccination against SARS-CoV-2 protects from morbidity, mortality, and sequelae from COVID19 in patients with cancer

    No full text
    BACKGROUND: Although SARS-CoV-2 vaccines immunogenicity in patients with cancer has been investigated, whether they can significantly improve the severity of COVID-19 in this specific population is undefined. METHODS: Capitalizing on OnCovid (NCT04393974) registry data we reported COVID-19 mortality and proxies of COVID-19 morbidity, including post-COVID-19 outcomes, according to the vaccination status of the included patients. RESULTS: 2090 eligible patients diagnosed with COVID-19 between 02/2020 and 11/2021 were included, of whom 1930 (92.3%) unvaccinated, 91 (4.4%) fully vaccinated and 69 (3.3%) partially vaccinated. With the exception of a higher prevalence of patients from the UK (p = 0.0003) and receiving systemic anticancer therapy at COVID-19 diagnosis (p = 0.0082) among fully vaccinated patients, no demographics/oncological features were associated with vaccination status. The 14-days case fatality rate (CFR) (5.5% vs 20.7%, p = 0.0004) and the 28-days CFR (13.2% vs 27.4%, p = 0.0028) demonstrated a significant improvement for fully vaccinated patients in comparison with unvaccinated patients. The receipt of prior full vaccination was also associated with reduced symptomatic COVID-19 (79.1% vs 88.5%, p = 0.0070), need of COVID-19 oriented therapy (34.9% vs 63.2%, p < 0.0001), complications from COVID-19 (28.6% vs 39.4%, p = 0.0379), hospitalizations due to COVID-19 (42.2% vs 52.5%, p = 0.0007) and oxygen therapy requirement (35.7% vs 52%, p = 0.0036). Following Inverse Probability Treatment Weighting (IPTW) procedure no statistically significant difference according to the vaccination status was confirmed; however, all COVID-19 related outcomes were concordantly in favour of full vaccination. Among the 1228 (58.8%) patients who underwent a formal reassessment at participating centres after COVID-19 resolution, fully vaccinated patients experienced less sequelae than unvaccinated patients (6.7% vs 17.2%, p = 0.0320). CONCLUSIONS: This analysis provides initial evidence in support of the beneficial effect of SARS-CoV-2 vaccines against morbidity and mortality from COVID-19 in patients with cancer

    COVID-19 Sequelae and the Host Proinflammatory Response: An Analysis From the OnCovid Registry

    Get PDF
    Background Fifteen percent of patients with cancer experience symptomatic sequelae, which impair post-COVID-19 outcomes. In this study, we investigated whether a proinflammatory status is associated with the development of COVID-19 sequelae. Methods OnCovid recruited 2795 consecutive patients who were diagnosed with Severe Acute Respiratory Syndrome Coronavirus 2 infection between February 27, 2020, and February 14, 2021. This analysis focused on COVID-19 survivors who underwent a clinical reassessment after the exclusion of patients with hematological malignancies. We evaluated the association of inflammatory markers collected at COVID-19 diagnosis with sequelae, considering the impact of previous systemic anticancer therapy. All statistical tests were 2-sided. Results Of 1339 eligible patients, 203 experienced at least 1 sequela (15.2%). Median baseline C-reactive protein (CRP; 77.5 mg/L vs 22.2 mg/L, P < .001), lactate dehydrogenase (310 UI/L vs 274 UI/L, P = .03), and the neutrophil to lymphocyte ratio (NLR; 6.0 vs 4.3, P = .001) were statistically significantly higher among patients who experienced sequelae, whereas no association was reported for the platelet to lymphocyte ratio and the OnCovid Inflammatory Score, which includes albumin and lymphocytes. The widest area under the ROC curve (AUC) was reported for baseline CRP (AUC = 0.66, 95% confidence interval [CI]: 0.63 to 0.69), followed by the NLR (AUC = 0.58, 95% CI: 0.55 to 0.61) and lactate dehydrogenase (AUC = 0.57, 95% CI: 0.52 to 0.61). Using a fixed categorical multivariable analysis, high CRP (odds ratio [OR] = 2.56, 95% CI: 1.67 to 3.91) and NLR (OR = 1.45, 95% CI: 1.01 to 2.10) were confirmed to be statistically significantly associated with an increased risk of sequelae. Exposure to chemotherapy was associated with a decreased risk of sequelae (OR = 0.57, 95% CI: 0.36 to 0.91), whereas no associations with immune checkpoint inhibitors, endocrine therapy, and other types of systemic anticancer therapy were found. Conclusions Although the association between inflammatory status, recent chemotherapy and sequelae warrants further investigation, our findings suggest that a deranged proinflammatory reaction at COVID-19 diagnosis may predict for sequelae development

    SARS-CoV-2 omicron (B.1.1.529)-related COVID-19 sequelae in vaccinated and unvaccinated patients with cancer: results from the OnCovid registry

    Get PDF
    Background: COVID-19 sequelae can affect about 15% of patients with cancer who survive the acute phase of SARS-CoV-2 infection and can substantially impair their survival and continuity of oncological care. We aimed to investigate whether previous immunisation affects long-term sequelae in the context of evolving variants of concern of SARS-CoV-2. Methods: OnCovid is an active registry that includes patients aged 18 years or older from 37 institutions across Belgium, France, Germany, Italy, Spain, and the UK with a laboratory-confirmed diagnosis of COVID-19 and a history of solid or haematological malignancy, either active or in remission, followed up from COVID-19 diagnosis until death. We evaluated the prevalence of COVID-19 sequelae in patients who survived COVID-19 and underwent a formal clinical reassessment, categorising infection according to the date of diagnosis as the omicron (B.1.1.529) phase from Dec 15, 2021, to Jan 31, 2022; the alpha (B.1.1.7)-delta (B.1.617.2) phase from Dec 1, 2020, to Dec 14, 2021; and the pre-vaccination phase from Feb 27 to Nov 30, 2020. The prevalence of overall COVID-19 sequelae was compared according to SARS-CoV-2 immunisation status and in relation to post-COVID-19 survival and resumption of systemic anticancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974. Findings: At the follow-up update on June 20, 2022, 1909 eligible patients, evaluated after a median of 39 days (IQR 24-68) from COVID-19 diagnosis, were included (964 [50·7%] of 1902 patients with sex data were female and 938 [49·3%] were male). Overall, 317 (16·6%; 95% CI 14·8-18·5) of 1909 patients had at least one sequela from COVID-19 at the first oncological reassessment. The prevalence of COVID-19 sequelae was highest in the pre-vaccination phase (191 [19·1%; 95% CI 16·4-22·0] of 1000 patients). The prevalence was similar in the alpha-delta phase (110 [16·8%; 13·8-20·3] of 653 patients, p=0·24), but significantly lower in the omicron phase (16 [6·2%; 3·5-10·2] of 256 patients, p<0·0001). In the alpha-delta phase, 84 (18·3%; 95% CI 14·6-22·7) of 458 unvaccinated patients and three (9·4%; 1·9-27·3) of 32 unvaccinated patients in the omicron phase had sequelae. Patients who received a booster and those who received two vaccine doses had a significantly lower prevalence of overall COVID-19 sequelae than unvaccinated or partially vaccinated patients (ten [7·4%; 95% CI 3·5-13·5] of 136 boosted patients, 18 [9·8%; 5·8-15·5] of 183 patients who had two vaccine doses vs 277 [18·5%; 16·5-20·9] of 1489 unvaccinated patients, p=0·0001), respiratory sequelae (six [4·4%; 1·6-9·6], 11 [6·0%; 3·0-10·7] vs 148 [9·9%; 8·4-11·6], p=0·030), and prolonged fatigue (three [2·2%; 0·1-6·4], ten [5·4%; 2·6-10·0] vs 115 [7·7%; 6·3-9·3], p=0·037). Interpretation: Unvaccinated patients with cancer remain highly vulnerable to COVID-19 sequelae irrespective of viral strain. This study confirms the role of previous SARS-CoV-2 immunisation as an effective measure to protect patients from COVID-19 sequelae, disruption of therapy, and ensuing mortality. Funding: UK National Institute for Health and Care Research Imperial Biomedical Research Centre and the Cancer Treatment and Research Trust
    corecore