704 research outputs found
A short proof of MacLane's planarity theorem
This note gives a short and elementary proof of MacLane's theorem on the embedding of graphs in a 2-sphere
Tracking the GLOMR satellite
The task of day-to-day low orbiting satellite tracking utilizing the NAVSPASUR orbital elements is discussed and methods for improving pass time predictions are presented. Estimates are needed for preprogramming of satellite-initiated communications scheduling which requires an accuracy of approximately 30 seconds. This can be achieved by removing the variance associated with the NAVSPASUR D sub 2 (decay) term. Finally, the shock evidenced in GLOMR's orbit on February 7, 1986 is documented and attributed to a severe solar storm with immediately enhanced drag. GLOMR's life expectancy in orbit is now estimated to have dropped approximately 17% by the end of orbit in early February, 1987
The aerospace energy systems laboratory: Hardware and software implementation
For many years NASA Ames Research Center, Dryden Flight Research Facility has employed automation in the servicing of flight critical aircraft batteries. Recently a major upgrade to Dryden's computerized Battery Systems Laboratory was initiated to incorporate distributed processing and a centralized database. The new facility, called the Aerospace Energy Systems Laboratory (AESL), is being mechanized with iAPX86 and iAPX286 hardware running iRMX86. The hardware configuration and software structure for the AESL are described
Differential temperature cryogenic liquid level sensing system Final report
Differential temperature cryogenic liquid level sensing system design and developmen
Virtual reality applications to automated rendezvous and capture
Virtual Reality (VR) is a rapidly developing Human/Computer Interface (HCI) technology. The evolution of high-speed graphics processors and development of specialized anthropomorphic user interface devices, that more fully involve the human senses, have enabled VR technology. Recently, the maturity of this technology has reached a level where it can be used as a tool in a variety of applications. This paper provides an overview of: VR technology, VR activities at Marshall Space Flight Center (MSFC), applications of VR to Automated Rendezvous and Capture (AR&C), and identifies areas of VR technology that requires further development
The Surveyor 3 and Surveyor 4 flight paths and their determination from tracking data
Surveyor 3 and 4 spacecraft flight path
Particulate and aerosol detector
A device is described for counting aerosols and sorting them according to either size, mass or energy. The component parts are an accelerator, a capacitor sensor and a readout. The accelerator is a means for accelerating the aerosols toward the face of the capacitor sensor with such force that they partially penetrate the capacitor sensor, momentarily discharging it. The readout device is a means for counting the number of discharges of the capacitor sensor and measuring the amplitudes of these different discharges. The aerosols are accelerated by the accelerator in the direction of the metal layer with such force that they penetrate the metal and damage the oxide layers, thereby allowing the electrical charge on the capacitor to discharge through the damaged region. Each incident aerosol initiates a discharge path through the capacitor in such a fashion as to vaporize the conducting path. Once the discharge action is complete, the low resistance path no longer exists between the two capacitor plates and the capacitor is again able to accept a charge. The active area of the capacitor is reduced in size by the damaged area each time a discharge occurs
Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries
Viruses are recognized as ubiquitous components of marine ecosystems; however, there has been limited study of viral abundance and its ecological role in sediments. Viral abundance was determined in both the water column and sediments of a eutrophic (Brisbane River/Moreton Bay; 27°25′S, 153°5′E) and oligotrophic (Noosa River; 26°15′S, 153°0′E) estuary in subtropical Queensland, Australia. Viruses, bacteria, and microalgae from both water column and extracted sediment samples were enumerated using SYBR Green I staining and epifluorescence microscopy. Sediment viral abundance ranged from 10 to 10 particles cm of sediment, bacterial abundance ranged from 10 to 10 cells cm of sediment, and microalgal abundance ranged from 10 to 10 cells cm sediment. Pelagic abundances for all microorganisms were 10-1,000-fold lower than sediment abundances. Correlations between viral abundances and suspended solids suggest that viruses sorbed to suspended material in the water column may settle out and contribute to the benthic viral population. Virus production was measured by a time course increase of viral abundance in seawater using a dilution technique. Virus production was highest in eutrophic waters of the Brisbane River, and addition of inorganic nutrients (NO + NH + PO + SiO) stimulated viral production rates at all stations by 14-52% above ambient, suggesting that inorganic nutrient availability may play a key role in aquatic viral abundance
Modeling Constellation Virtual Missions Using the Vdot(Trademark) Process Management Tool
The authors have identified a software tool suite that will support NASA's Virtual Mission (VM) effort. This is accomplished by transforming a spreadsheet database of mission events, task inputs and outputs, timelines, and organizations into process visualization tools and a Vdot process management model that includes embedded analysis software as well as requirements and information related to data manipulation and transfer. This paper describes the progress to date, and the application of the Virtual Mission to not only Constellation but to other architectures, and the pertinence to other aerospace applications. Vdot s intuitive visual interface brings VMs to life by turning static, paper-based processes into active, electronic processes that can be deployed, executed, managed, verified, and continuously improved. A VM can be executed using a computer-based, human-in-the-loop, real-time format, under the direction and control of the NASA VM Manager. Engineers in the various disciplines will not have to be Vdot-proficient but rather can fill out on-line, Excel-type databases with the mission information discussed above. The author s tool suite converts this database into several process visualization tools for review and into Microsoft Project, which can be imported directly into Vdot. Many tools can be embedded directly into Vdot, and when the necessary data/information is received from a preceding task, the analysis can be initiated automatically. Other NASA analysis tools are too complex for this process but Vdot automatically notifies the tool user that the data has been received and analysis can begin. The VM can be simulated from end-to-end using the author s tool suite. The planned approach for the Vdot-based process simulation is to generate the process model from a database; other advantages of this semi-automated approach are the participants can be geographically remote and after refining the process models via the human-in-the-loop simulation, the system can evolve into a process management server for the actual process
- …
