111 research outputs found

    Bioprocess Development for Lantibiotic Ruminococcin-A Production in Escherichia coli and Kinetic Insights Into LanM Enzymes Catalysis

    Get PDF
    Ruminococcin-A (RumA) is a peptide antibiotic with post-translational modifications including thioether cross-links formed from non-canonical amino acids, called lanthionines, synthesized by a dedicated lanthionine-generating enzyme RumM. RumA is naturally produced by Ruminococcus gnavus, which is part of the normal bacterial flora in the human gut. High activity of RumA against pathogenic Clostridia has been reported, thus allowing potential exploitation of RumA for clinical applications. However, purifying RumA from R. gnavus is challenging due to low production yields (120 mg L–1 for the chimeric construct and >150 mg L–1 for RumM. The correlation observed between microscale and lab-scale bioreactor cultivations suggests that the process is robust and realistically applicable to industrial-scale conditions.DFG, 53182490, EXC 314: Unifying Concepts in CatalysisDFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Incorporation of non-canoncical amino acids into recombinant human proteins heterologously expressed in E. coli by bioprocess parturbations

    Get PDF
    The purity of heterologous recombinant proteins is of utmost importance to the pharmaceutical sector since most are consumed as therapeutic agents by humans. Variability caused by co- and posttranslational modifications is a major concern in pharmaceutical production. In order to develop strategies which guarantee a homogeneous product in a robust production process, it is important to better understand the metabolic basis of the synthesis of related non-canonical amino acids. So far, studies have identified high glucose fluxes in connection to oxygen limitation and overexpression of leucine-rich proteins as possible reasons for the production of non-canonical amino acids and their incorporation into heterologous proteins expressed in Escherichia coli. The results presented in this work provide evidence that oscillations in the concentrations of glucose and oxygen as they occur in inhomogeneous industrial scale bioreactors potentiate the synthesis and incorporation of norvaline into the leucine-rich protein IL-2, heterologously expressed in E. coli W3110M, as observed in well-mixed homogenous cultures and perturbed shake flask cultivations. In order to represent the heterogeneities existing in large-scale bioreactors, two experimental setups were applied, using a simple shake flask scale-down model developed to monitor dissolved oxygen and pH online during a batch and fed-batch cultivation phases. Results here show that by applying repeated glucose pulses to the glucose limited culture, which consequently induce oscillations in dissolved oxygen, norvaline is accumulated. Analysis of inclusion bodies that resulted from the expressed IL-2 revealed the presence of norvaline in the protein. A higher concentration of norvaline was observed in the oscillating scale-down model compared to the non-perturbed culture, which suggests that the conditions as they typically occur in large scale bioreactors may be critical for product quality. The results and tools, developed in this work are a solid basis for future cell engineering approaches to overcome the challenges in view of product quality

    Expansions of cytotoxic CD4+CD28− T-cells drive excess cardiovascular mortality in rheumatoid arthritis and other chronic inflammatory conditions and are triggered by CMV infection

    Get PDF
    A large proportion of cardiovascular pathology results from immune-mediated damage, including systemic inflammation and cellular proliferation, which cause a narrowing of the blood vessels. Expansions of cytotoxic CD4+ T-cells characterized by loss of CD28 (‘CD4+CD28− T-cells’ or ‘CD4+CD28null cells’) are closely associated with cardiovascular disease (CVD), in particular coronary artery damage. Direct involvement of these cells in damaging the vasculature has been demonstrated repeatedly. Moreover, CD4+CD28− T-cells are significantly increased in rheumatoid arthritis (RA) and other autoimmune conditions. It is striking that expansions of this subset beyond 1-2% occur exclusively in CMV-infected people. CMV infection itself is known to increase the severity of autoimmune diseases, in particular RA and has also been linked to increased vascular pathology. A review of the recent literature on immunological changes in cardiovascular disease, RA, and CMV infection provides strong evidence that expansions of cytotoxic CD4+CD28− T-cells in RA and other chronic inflammatory conditions are limited to CMV-infected patients and driven by CMV-infection. They are likely to be responsible for the excess cardiovascular mortality observed in these situations. The CD4+CD28− phenotype convincingly links CMV infection to cardiovascular mortality based on a direct cellular-pathological mechanism rather than epidemiological association

    HIV and HPV infections and ocular surface squamous neoplasia: systematic review and meta-analysis.

    Get PDF
    BACKGROUND: The frequency of ocular surface squamous neoplasias (OSSNs) has been increasing in populations with a high prevalence of infection with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) and infection with human papillomavirus (HPV). We aimed to quantify the association between HIV/AIDS and HPV infection and OSSN, through systematic review and meta-analysis. METHODS: The articles providing data on the association between HIV/AIDS and/or HPV infection and OSSN were identified in MEDLINE, SCOPUS and EMBASE searched up to May 2013, and through backward citation tracking. The DerSimonian and Laird method was used to compute summary relative risk (RR) estimates and 95% confidence intervals (95% CI). Heterogeneity was quantified with the I(2) statistic. RESULTS: HIV/AIDS was strongly associated with an increased risk of OSSN (summary RR=8.06, 95% CI: 5.29-12.30, I(2)=56.0%, 12 studies). The summary RR estimate for the infection with mucosal HPV subtypes was 3.13 (95% CI: 1.72-5.71, I(2)=45.6%, 16 studies). Four studies addressed the association between both cutaneous and mucosal HPV subtypes and OSSN; the summary RR estimates were 3.52 (95% CI: 1.23-10.08, I(2)=21.8%) and 1.08 (95% CI: 0.57-2.05, I(2)=0.0%), respectively. CONCLUSION: Human immunodeficiency virus infection increases the risk of OSSN by nearly eight-fold. Regarding HPV infection, only the cutaneous subtypes seem to be a risk factor

    Relationship between Plasmodium falciparum malaria prevalence, genetic diversity and endemic Burkitt lymphoma in Malawi

    Get PDF
    Endemic Burkitt lymphoma (eBL) has been linked to Plasmodium falciparum (Pf) malaria infection, but the contribution of infection with multiple Pf genotypes is uncertain. We studied 303 eBL (cases) and 274 non eBL-related cancers (controls) in Malawi using a sensitive and specific molecular-barcode array of 24 independently segregating Pf single nucleotide polymorphisms. Cases had a higher Pf malaria prevalence than controls (64.7% versus 45.3%; odds ratio [OR] 2.1, 95% confidence interval (CI): 1.5 to 3.1). Cases and controls were similar in terms of Pf density (4.9 versus 4.5 log copies, p = 0.28) and having ≥3 non-clonal calls (OR 2.7, 95% CI: 0.7-9.9, P = 0.14). However, cases were more likely to have a higher Pf genetic diversity score (153.9 versus 133.1, p = 0.036), which measures a combination of clonal and non-clonal calls, than controls. Further work is needed to evaluate the possible role of Pf genetic diversity in the pathogenesis of endemic BL

    Heterologous biosynthesis, modifications and structural characterization of ruminococcin-A, a lanthipeptide from the gut bacterium ruminococcus gnavus E1, in escherichia coli

    Get PDF
    Ruminococcin A (RumA) is a lanthipeptide with high activity against pathogenic clostridia and is naturally produced by the strict anaerobic bacterium Ruminococcus gnavus E1, isolated from human intestine. Cultivating R. gnavus E1 is challenging, limiting high-quality production, further biotechnological development and therapeutic exploitation of RumA. To supply an alternative production system, the gene encoding RumA-modifying enzyme (RumM) and the gene encoding the unmodified precursor peptide (preRumA) were amplified from the chromosome of R. gnavus E1 and coexpressed in Escherichia coli. Our results show that the ruminococcin-A lanthionine synthetase RumM catalysed dehydration of threonine and serine residues and subsequently installed thioether bridges into the core structure of a mutant version of preRumA (preRumA*). These modifications were achieved when the peptide was expressed as a fusion protein together with GFP, demonstrating that a larger attachment to the N-terminus of the leader peptide does not obstruct in vivo processivity of RumM in modifying the core peptide. The leader peptide serves as a docking sequence which the modifying enzyme recognizes and interacts with, enabling its catalytic role. We further investigated RumM catalysis in conjunction with the formation of complexes observed between RumM and the chimeric GFP fusion protein. Results obtained suggested some insights into the catalytic mechanisms of class II lanthipeptide synthetases. Our data further indicated the presence of three thioether bridges, contradicting a previous report whose findings ruled out the possibility of forming a third ring in RumA. Modified preRumA* was activated in vitro by removing the leader peptide using trypsin and biological activity was achieved against Bacillus subtilis ATCC 6633. A production yield of 6 mg of pure modified preRumA* per litre of E. coli culture was attained and considering the size ratio of the leader-to-core segments of preRumA*, this amount would generate a final yield of approximately 1-2 mg of active RumA when the leader peptide is removed. The yield of our system exceeds that attainable in the natural producer by several thousand-fold. The system developed herein supplies useful tools for product optimization and for performing in vivo peptide engineering to generate new analogues with superior anti-infective properties.DFG, 325093850, Open Access Publizieren 2017 - 2018 / Technische Universität Berli

    HLA polymorphisms and detection of kaposi sarcoma-associated herpesvirus DNA in saliva and peripheral blood among children and their mothers in the uganda sickle cell anemia KSHV Study

    Get PDF
    Kaposi sarcoma-associated herpesvirus (KSHV, also called Human herpesvirus 8 or HHV8) is a γ-2 herpesvirus that causes Kaposi sarcoma. KSHV seroprevalence rates vary geographically with variable rates recorded in different sub Sahara African countries, suggesting that effects of genetic and/or environmental factors may influence the risk of infection. One study conducted in South Africa, where KSHV seroprevalence is relatively low, found that carriage of human leukocyte antigen (HLA) alleles HLA-A*6801, HLA-A*30, HLA-A*4301, and HLA-DRB1*04 was associated with increased shedding of KSHV DNA in saliva. Confirmation of those results would strengthen the hypothesis that genetic factors may influence KSHV distribution by modulating KSHV shedding in saliva. To explore these associations in another setting, we used high resolution HLA-A, B, and DRB1 typing on residual samples from the Uganda Sickle Cell Anemia KSHV study, conducted in a high KSHV seroprevalence region, to investigate associations between HLA and KSHV shedding in saliva or peripheral blood among 233 children and their mothers. HLA-A and HLA-DRB1 alleles were not associated with KSHV shedding in our study, but our study was small and was not adequately powered to exclude small associations. In exploratory analyses, we found marginal association of KSHV DNA shedding in saliva but not in peripheral blood among children carrying HLA- B*4415 and marginal association of KSHV DNA shedding in peripheral blood but not in saliva among children carrying HLA- B*0801 alleles. The contribution of individual HLA polymorphisms to KSHV shedding is important but it may vary in different populations. Larger population-based studies are needed to estimate the magnitude and direction of association of HLA with KSHV shedding and viral control

    Chlamydia pneumoniae, heat shock proteins 60 and risk of secondary cardiovascular events in patients with coronary heart disease under special consideration of diabetes: a prospective study

    Get PDF
    BACKGROUND: There have been suggestions of an association between Chlamydia pneumoniae, chlamydial heat shock protein (Ch-hsp) 60 and human heat shock protein (h-hsp) 60 infection sero-status and development of secondary cardiovascular events. Patients with diabetes might be at higher risk since they are prone to infections. The objective of this study was to investigate prospectively the role of Chlamydia pneumoniae (CP), chlamydial heat shock protein (Ch-hsp) 60 and a possible intermediate role of human heat shock protein (h-hsp) 60 sero-status in the development of secondary cardiovascular disease (CVD) events in patients with coronary heart disease (CHD) under special consideration of diabetes mellitus. METHODS: Patients aged 30–70 undergoing an in-patient rehabilitation program after acute manifestation of coronary heart disease (International Classification of Disease, 9(th )Rev. pos. 410–414) between January 1999 and May 2000 in one of two participating rehabilitation clinics in Germany were included in this analysis. Chlamydia pneumoniae (CP), chlamydial heat shock protein (Ch-hsp) 60 and human heat shock protein (h-hsp) 60 status at baseline were measured by serum immunoglobulin G and A antibodies. Secondary CVD events (myocardial infarction, stroke, and cardiovascular death) were recorded during a mean follow-up period of 33.5 months (response = 87%). RESULTS: Among the 1052 subjects 37.4% and 39.3% were sero-positive to CP IgA and IgG respectively, 22.2% were sero-positive to Ch-hsp 60 IgG and 8.4% were positive to h-hsp 60 IgG at baseline. During follow-up, secondary CVD events occurred among 71 (6.8%) participants. Occurrence of a secondary CVD event was more common among CP (IgA) and CP (IgG) sero-positive than among sero-negative patients (p-values 0.04 and 0.1, respectively). The risk of secondary CVD events was increased among patients with both a positive CP sero-status and diabetes compared to infection negative, non-diabetic patients and in general, sero-positivity added a hazard to diabetes. The interaction term between infection sero-status and diabetes was not statistically significant. We were not able to show an intermediate role of human heat shock protein (h-hsp) 60 sero-status in the development of secondary CVD events in patients with CHD. CONCLUSION: Results from this cohort of 1052 patients with pre-existing CHD cannot exclude a possible moderate increase in risk of secondary CVD events among patients with a positive infection sero-status. However, our study showed no intermediate role of human heat shock protein (h-hsp) 60 sero-status in the development of secondary CVD events in patients with CHD. Larger studies or meta-analysis of multiple studies are needed to address the interaction between infection sero-status and diabetes with adequate power
    corecore