3,067 research outputs found

    Bosonization approach for "atomic collapse" in graphene

    Get PDF
    We study quantum electrodynamics with 2+1 dimensional massless Dirac fermion around a Coulomb impurity. Around a large charge with atomic number Z > 137, the QED vacuum is expected to collapse due to the strong Coulombic force. While the relativistic quantum mechanics fails to make reliable predictions for the fate of the vacuum, the heavy ion collision experiment also does not give clear understanding of this system. Recently, the "atomic collapse" resonances were observed on graphene where an artificial nuclei can be made. In this paper, we present our nonperturbative study of the vacuum structure of the quasiparticles in graphene with a charge impurity which contains multi-body effect using bosonization method.Comment: 18 pages, 7 figure

    Generalized Gradient Flow Equation and Its Application to Super Yang-Mills Theory

    Get PDF
    We generalize the gradient flow equation for field theories with nonlinearly realized symmetry. Applying the formalism to super Yang-Mills theory, we construct a supersymmetric extension of the gradient flow equation. It can be shown that the super gauge symmetry is preserved in the gradient flow. Furthermore, choosing an appropriate modification term to damp the gauge degrees of freedom, we obtain a gradient flow equation which is closed within the Wess-Zumino gauge.Comment: 35 pages, v2: typos corrected and references added, v3: published versio

    Flow Equation of N=1 Supersymmetric O(N) Nonlinear Sigma Model in Two Dimensions

    Get PDF
    We study the flow equation for the N=1\mathcal{N}=1 supersymmetric O(N)O(N) nonlinear sigma model in two dimensions, which cannot be given by the gradient of the action, as evident from dimensional analysis. Imposing the condition on the flow equation that it respects both the supersymmetry and the O(N)O(N) symmetry, we show that the flow equation has a specific form, which however contains an undetermined function of the supersymmetric derivatives DD and Dˉ\bar D. Taking the most simple choice, we propose a flow equation for this model. As an application of the flow equation, we give the solution of the equation at the leading order in the large NN expansion. The result shows that the flow of the superfield in the model is dominated by the scalar term, since the supersymmetry is unbroken in the original model. It is also shown that the two point function of the superfield is finite at the leading order of the large NN expansion.Comment: 17 pages; v2: published versio

    Constraints on a New Light Spin-One Particle from Rare b -> s Transitions

    Full text link
    The anomalously large like-sign dimuon charge asymmetry in semileptonic b-hadron decays recently measured by the D0 Collaboration may be hinting at the presence of CP-violating new physics in the mixing of B_s mesons. It has been suggested that the effect of a nonstandard spin-1 particle lighter than the b quark with flavor-changing couplings to b and s quarks can reproduce the D0 result within its one-sigma range. Here we explore the possibility that the new particle also couples to charged leptons l=e,mu and thus contributes to rare b -> s processes involving the leptons. We consider in particular constraints on its couplings from existing experimental data on the inclusive B -> X_s l^+ l^- and exclusive B -> K^{(*)} l^+ l^- decays, as well as the anomalous magnetic moments of the leptons. We find that there is parameter space of the particle that is allowed by the current data. Future measurements of these B transitions and rare decays of the B_s meson, such as B_s -> (phi,eta,eta') l^+ l^- and B_s -> l^+ l^-, at LHCb and next-generation B factories can probe its presence or couplings more stringently.Comment: 19 pages, 5 figure

    Conserved charges in general relativity

    Get PDF
    We present a precise definition of a conserved quantity from an arbitrary covariantly conserved current available in a general curved spacetime with Killing vectors. This definition enables us to define energy and momentum for matter by the volume integral. As a result we can compute charges of Schwarzschild and BTZ black holes by the volume integration of a delta function singularity. Employing the definition we also compute the total energy of a static compact star. It contains both the gravitational mass known as the Misner-Sharp mass in the Oppenheimer-Volkoff equation and the gravitational binding energy. We show that the gravitational binding energy has the negative contribution at maximum by 68% of the gravitational mass in the case of a constant density. We finally comment on a definition of generators associated with a vector field on a general curved manifold.Comment: 16 pages (single column), v3 (major revision): more discussion on a compact star included, a comparison with previous results given in the appendix, more references adde
    corecore