12 research outputs found
Hypotensive and Vasorelaxant Effects of Sericin-Derived Oligopeptides in Rats
Sericin-derived oligopeptides obtained from silk cocoons were investigated for the in vivo hypotensive effect and investigated for the underlying mechanism involved in vasodilation in isolated rat thoracic aorta. In normotensive anesthetized rats, oligopeptides induced an immediate and transient hypotensive activity. In rat aortic rings, oligopeptides induced a concentration-dependent vasorelaxation in vessels precontracted with both KCl and phenylephrine (PE) with endothelium-intact or endothelium-denuded rings. In endothelium-intact rings, pretreatment with Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 100 µM), an inhibitor of the NO synthase (NOS) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 1 µM), a selective inhibitor of the guanylyl cyclase enzyme, significantly reduced the relaxant effect of oligopeptides. However, indomethacin, an inhibitor of the cyclooxygenase, had no effect on oligopeptides-induced relaxation. In addition, pretreatment with tetraethylammonium (TEA, 5 mM) reduced the maximal relaxant effect induced by oligopeptides. By contrast, relaxation was not affected by 4-aminopyridine (4-AP, 1 mM), glibenclamide (10 µM), or barium chloride (BaCl2, 1 mM). In depolarization Ca2+-free solution, oligopeptides inhibited calcium chloride- (CaCl2-) induced contraction in endothelium-denuded rings in a concentration-dependent manner. Nevertheless, oligopeptides attenuated transient contractions in Ca2+-free medium containing EGTA (1 mM) induced by 1 µM PE, but they were not affected by 20 mM caffeine. It is obvious that potent vasodilation effect of oligopeptides is mediated through both the endothelium and the vascular smooth muscle.</jats:p
Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: a review
peer-reviewedThis review, focusing on studies published between 2005 and 2017, analysed the literature on the generation of bioactive peptides (BAPs) from edible insect proteins following enzymatic hydrolysis. The protein extraction and quantification methodologies used for edible insects varied considerably. While several edible insects have been evaluated for their ability to release BAPs, silkworm (Bombyx mori) is currently the most studied. Specifically, the angiotensin converting enzyme (ACE) inhibitory, antioxidant and antidiabetic properties of edible insect protein enzymatic hydrolysates have been studied. Potent in vitro ACE inhibitory and antioxidant hydrolysates/peptides have been reported. In certain instances, these properties were validated in small animal studies (i.e. hypotensive effects). Enzymatic hydrolysis of edible insect proteins may also enhance technofunctional properties (i.e. solubility). The wider application of enzymatic hydrolysis protocols to edible insect proteins may ultimately allow for the increased discovery and utilisation of novel BAPs as sustainable protein/peptide sources for human nutrition.ACCEPTEDpeer-reviewe
Vasorelaxant and Antihypertensive Effects of Neferine in Rats: An In Vitro and In Vivo Study
AbstractThe present study was performed to examine the antihypertensive effect of neferine in hypertensive rats and its relaxant mechanisms in isolated rat thoracic aorta. The antihypertensive effect was evaluated by tail-cuff methods on NG-nitro-L-arginine methyl ester (L-NAME) (40 mg/kg BW) 4-week hypertensive-induced hypertensive rats. The vasorelaxant effect and its mechanisms were studied by the organ bath technique in the thoracic aorta isolated from normotensive rats. The results indicated that the treatment of neferine (1 mg/kg and 10 mg/kg) markedly decreased the systolic blood pressure (SBP) when compared with the hypertension group (137.75 ± 10.14 mmHg and 132.23 ± 9.5 mmHg, respectively, p < 0.001), without affecting the heart rate. Moreover, neferine (10−12 − 10−4 M) exhibited concentration-dependent vasorelaxation in endothelium-intact rings (Emax values = 98.95 ± 0.66% and pD2 = 7.93 ± 0.28) and endothelium-denuded rings (Emax values = 90.61 ± 1.91% and pD2 = 6.85 ± 0.36). The effects of neferine were reduced by pre-incubation with L-NAME and 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) but not with pre-incubation with indomethacin and K+channel blockers. Neferine attenuated the contractions induced by phenylephrine and caffeine in a Ca2+-free solution and also inhibited in CaCl2- and phenylephrine-induced contracted rings. Our study suggests that neferine exhibited hypertensive potential, induced vasorelaxation through the endothelium nitric oxide synthase (eNOS)/nitric oxide (NO)/soluble guanylyl cyclase (sGC) pathway and involved the modulation of Ca2+ influx through Ca2+ channels and intracellular Ca2+ release from the sarcoplasmic reticulum.</jats:p
Endothelium-independent vasorelaxation effects of 16-O-acetyldihydroisosteviol on isolated rat thoracic aorta
Hexahydrocurcumin ameliorates hypertensive and vascular remodeling in L-NAME-induced rats
An Investigation of the Relationship Among Medical Center’s Image, Service Quality, and Patient Loyalty
This research aimed to study significant relationships among factors influencing customer satisfaction and loyalty in the health care service industry. In order to test the conceptual framework, structural equation modeling (SEM) was used to analyze the data from 252 respondents (outpatients) at four public and private hospitals in Khon Kaen City, Thailand. This empirical research determined how the health care service image, service quality, and behavioral intentions were interrelated using a scale adapted from Taiwan Customer Satisfaction and American Customer Satisfaction Indices, as the perceived quality variable was designated as a second-order construct. The findings showed that the significant factor impacting customer loyalty is customer satisfaction. Corporate image significantly enhanced both customer expectations (CEs) and perceived service quality. The researchers also observed that perceived service quality was positively related to tangibility, instrumental, and emotional supports in addition to customer satisfaction. In conclusion, this article proposed a thoughtful research scenario for management and corporate/public policymakers at the national level in Thailand. It was observed that a good image could directly enhance perceived service quality for businesses in the health service sector. Short Abstract We aimed to explore the relationship between image, service quality, and patient loyalty in the health service sector. A multivariate analysis (structural equation modeling) was employed to analyze the data from 252 outpatients in Khon Kaen City, Thailand. The conventional service quality model suggests that corporate image influences customer expectation, and then affects perceived service quality, then customer satisfaction, and finally, loyalty. However, this article found that, in the health service sector, a corporate image may directly influence perceived service quality without the customer expectation variable as a mediator. </jats:sec
Anti-Inflammatory Effects of Red Rice Bran Extract Ameliorate Type I Interferon Production via STING Pathway
Type I interferons (IFNs-I) are inflammatory cytokines that play an essential role in the pathogenesis of inflammation and autoimmune diseases. Signaling through nucleic acid sensors causes the production of IFNs-I. A stimulator of interferon genes (STING) is a DNA sensor that signals transduction, leading to the production of IFNs-I after their activation. This study aims to determine the anti-inflammatory effects of red rice bran extract (RRBE) on macrophages through the activation of STING signaling. RAW264.7 macrophage cells were stimulated with STING agonist (DMXAA) with and without RRBE. Cells and supernatant were collected. The level of mRNA expression was determined by qPCR, and inflammatory cytokine production was investigated by ELISA. The results indicate that RRBE significantly lowers the transcription of STING and interferon-stimulated genes (ISGs). Moreover, RRBE suppresses the phosphorylation of STING, leading to a decrease in the expression of Irf3, a transcription factor that initiates IFN-I signaling. Our results provide evidence that red rice bran extract may be a protective compound for inflammatory diseases by targeting STING signaling
Anti-Inflammatory Effects of Red Rice Bran Extract Ameliorate Type I Interferon Production via STING Pathway
Type I interferons (IFNs-I) are inflammatory cytokines that play an essential role in the pathogenesis of inflammation and autoimmune diseases. Signaling through nucleic acid sensors causes the production of IFNs-I. A stimulator of interferon genes (STING) is a DNA sensor that signals transduction, leading to the production of IFNs-I after their activation. This study aims to determine the anti-inflammatory effects of red rice bran extract (RRBE) on macrophages through the activation of STING signaling. RAW264.7 macrophage cells were stimulated with STING agonist (DMXAA) with and without RRBE. Cells and supernatant were collected. The level of mRNA expression was determined by qPCR, and inflammatory cytokine production was investigated by ELISA. The results indicate that RRBE significantly lowers the transcription of STING and interferon-stimulated genes (ISGs). Moreover, RRBE suppresses the phosphorylation of STING, leading to a decrease in the expression of Irf3, a transcription factor that initiates IFN-I signaling. Our results provide evidence that red rice bran extract may be a protective compound for inflammatory diseases by targeting STING signaling.</jats:p
Cleistocalyx nervosum var. paniala mitigates oxidative stress and inflammation induced by PM10 soluble extract in trophoblast cells via miR-146a-5p
Abstract Air pollution poses a significant global concern, notably impacting pregnancy outcomes through mechanisms such as DNA damage, oxidative stress, inflammation, and altered miRNA expression, all of which can adversely affect trophoblast functions. Cleistocalyx nervosum var. paniala, known for its abundance of anthocyanins with diverse biological activities including anti-mutagenic, antioxidant, and anti-inflammatory properties, is the focus of this study examining its effect on Particulate Matter 10 (PM10) soluble extract-induced trophoblast cell dysfunction via miRNA expression. The study involved the extraction of C. nervosum fruit using 70% ethanol, followed by fractionation with hexane, dichloromethane, and ethyl acetate. Subsequent testing for total phenolics, flavonoids, anthocyanins, and antioxidant activity revealed the ethyl acetate fraction (CN-EtOAcF) as possessing the highest phenolic and anthocyanin content along with potent antioxidant activity, prompting its selection for further investigation. In vitro studies on HTR-8/SVneo cells demonstrated that 5–10 µg/mL PM10 soluble extract exposure inhibited cell proliferation, migration, invasion, and induced apoptosis. However, pretreatment with 20–80 µg/mL CN-EtOAcF followed by 5 µg/mL PM10 soluble extract exposure exhibited protective effects against PM10 soluble extract-induced damage, including inflammation inhibition and intracellular ROS suppression. Notably, CN-EtOAcF down-regulated PM10-induced miR-146a-5p expression, with SOX5 identified as a potential target. Overall, CN-EtOAcF demonstrated the potential to protect against PM10-induced harm in trophoblast cells, suggesting its possible application in future therapeutic approaches
