214 research outputs found

    Jahn-Teller like origin of the tetragonal distortion in disordered Fe-Pd magnetic shape memory alloys

    Full text link
    The electronic structure and magnetic properties of disordered Fex_{x}Pd100x_{100-x} alloys (50<x<85)(50 < x < 85) are investigated in the framework of density functional theory using the full potential local orbital method (FPLO). Disorder is treated in the coherent potential approximation (CPA). Our calculations explain the experimental magnetization data. The origin of the tetragonal distortion in the Fe-Pd magnetic shape memory alloys is found to be a Jahn-Teller like effect which allows the system to reduce its band energy in a narrow composition range. Prospects for an optimization of the alloys' properties by adding third elements are discussed

    Electronic structure and the Fermi surface of ThRhIn5_5 in comparison with uranium and transuranium compounds

    Full text link
    By using a relativistic linear augmented-plane-wave method, we clarify energy band structure and the Fermi surfaces of recently synthesized thorium compound ThRhIn5_5. We find several cylindrical Fermi surface sheets, which are similar to those of CeTIn5_5 (T=Ir and Co), PuTGa5_5 (T=Co and Rh), and AmCoGa5_5. We discuss such similarity among the compounds including rare-earth or actinide ions with different ff electron numbers.Comment: 2 pages, 2 figure, Proceedings of SCES'05 (July 26-30, 2005, Vienna

    Dynamical mean-field theory of photoemission spectra of actinide compounds

    Full text link
    A model of photoemission spectra of actinide compounds is presented. The complete multiplet spectrum of a single ion is calculated by exact diagonalization of the two-body Hamiltonian of the f^n shell. A coupling to auxiliary fermion states models the interaction with a conduction sea. The ensuing self-energy function is combined with a band Hamiltonian of the compound, calculated in the local-density approximation, to produce a solid state Green's function. The theory is applied to PuSe and elemental Am. For PuSe a sharp resonance at the Fermi level arises from mixed valent behavior, while several features at larger binding energies can be identified with quantum numbers of the atomic system. For Am the ground state is dominated by the |f^6;J=0> singlet but the strong coupling to the conduction electrons mixes in a significant amount of f^7 character.Comment: Solid State Communications, in press; 4 pages 4 figure

    Determination of effective microscopic models for the frustrated antiferromagnets Cs2_2CuCl4_4 and Cs2_2CuBr4_4 by density functional methods

    Full text link
    We investigate the electronic and magnetic properties of the frustrated triangular-lattice antiferromagnets Cs2_2CuCl4_4 and Cs2_2CuBr4_4 in the framework of density functional theory. Analysis of the exchange couplings J and J' using the available X-ray structural data corroborates the values obtained from experimental results for Cs2_2CuBr4_4 but not for Cs2_2CuCl4_4. In order to understand this discrepancy, we perform a detailed study of the effect of structural optimization on the exchange couplings of Cs2_2CuCl4_4 employing different exchange-correlation functionals. We find that the exchange couplings depend on rather subtle details of the structural optimization and that only when the insulating state (mediated through spin polarization) is present in the structural optimization, we do have good agreement between the calculated and the experimentally determined exchange couplings. Finally, we discuss the effect of interlayer couplings as well as longer-ranged couplings in both systems.Comment: Phys. Rev. B in pres

    Nearest neighbor exchange in Co- and Mn-doped ZnO

    No full text
    We calculate the magnetic interactions between two nearest neighbor substitutional magnetic ions (Co or Mn) in ZnO by means of density functional theory and compare it with the available experimental data. Using the local spin density approximation we find a coexistence of ferro- and antiferromagnetic couplings for ZnO:Co, in contrast to experiment. For ZnO:Mn both couplings are antiferromagnetic but deviate quantitatively from measurement. That points to the necessity to account better for the strong electron correlation at the transition ion site which we have done by applying the LSDA+U method. We show that we have to distinguish two different nearest neighbor exchange integrals for the two systems in question which are all antiferromagnetic with values between -1.0 and -2.0 meV in reasonable agreement with experiment

    Importance of Itinerancy and Quantum Fluctuations for the Magnetism in Iron Pnictides

    Full text link
    By applying density functional theory, we find strong evidence for an itinerant nature of magnetism in two families of iron pnictides. Furthermore, by employing dynamical mean field theory with continuous time quantum Monte Carlo as an impurity solver, we observe that the antiferromagnetic metal with small magnetic moment naturally arises out of coupling between unfrustrated and frustrated bands. Our results point to a possible scenario for magnetism in iron pnictides where magnetism originates from a strong instability at the momentum vector (π\pi, π\pi, π\pi) while it is reduced by quantum fluctuations due to the coupling between weakly and strongly frustrated bands.Comment: 4 pages, 4 figure

    Band dependent emergence of heavy quasiparticles in CeCoIn5

    Full text link
    We investigate the low temperature (T << 2 K) electronic structure of the heavy fermion superconductor CeCoIn5 (Tc_c = 2.3 K) by angle-resolved photoemission spectroscopy (ARPES). The hybridization between conduction electrons and f-electrons, which ultimately leads to the emergence of heavy quasiparticles responsible for the various unusual properties of such materials, is directly monitored and shown to be strongly band dependent. In particular the most two-dimensional band is found to be the least hybridized one. A simplified multiband version of the Periodic Anderson Model (PAM) is used to describe the data, resulting in semi-quantitative agreement with previous bulk sensitive results from de-Haas-van-Alphen measurements.Comment: 6 pages, 3 figure

    The symmetry of the superconducting order parameter in PuCoGa5_5

    Full text link
    The symmetry of the superconducting order parameter in single-crystalline PuCoGa5_5 (Tc=18.5T_{\rm c} = 18.5 K) is investigated via zero- and transverse- field muon spin relaxation (μ\muSR) measurements, probing the possible existence of orbital and/or spin moments (time reversal-symmetry violation TRV) associated with the superconducting phase and the in-plane magnetic-field penetration depth λ(T)\lambda(T) in the mixed state, respectively. We find no evidence for TRV, and show that the superfluid density, or alternatively, Δλ(T)=λ(T)λ(0)\Delta\lambda(T) = \lambda(T) - \lambda(0), are T\propto T for T/Tc0.5T/T_{\rm c} \leq 0.5. Taken together these measurements are consistent with an even-parity (pseudo-spin singlet), d-wave pairing state.Comment: 4 pages, 5 figure
    corecore