116 research outputs found
Lie Bialgebra Structures for Centrally Extended Two- Dimensional Galilei Algebra and their Lie-Poisson Counterparts
All bialgebra structures for centrally extended Galilei algebra are
classified. The corresponding Lie-Poisson structures on centrally extended
Galilei group are found.Comment: Eq. (11) changed, 15 pages, LaTeX fil
Quantum (1+1) extended Galilei algebras: from Lie bialgebras to quantum R-matrices and integrable systems
The Lie bialgebras of the (1+1) extended Galilei algebra are obtained and
classified into four multiparametric families. Their quantum deformations are
obtained, together with the corresponding deformed Casimir operators. For the
coboundary cases quantum universal R-matrices are also given. Applications of
the quantum extended Galilei algebras to classical integrable systems are
explicitly developed.Comment: 16 pages, LaTeX. A detailed description of the construction of
integrable systems is carried ou
(1+1) Schrodinger Lie bialgebras and their Poisson-Lie groups
All Lie bialgebra structures for the (1+1)-dimensional centrally extended
Schrodinger algebra are explicitly derived and proved to be of the coboundary
type. Therefore, since all of them come from a classical r-matrix, the complete
family of Schrodinger Poisson-Lie groups can be deduced by means of the
Sklyanin bracket. All possible embeddings of the harmonic oscillator, extended
Galilei and gl(2) Lie bialgebras within the Schrodinger classification are
studied. As an application, new quantum (Hopf algebra) deformations of the
Schrodinger algebra, including their corresponding quantum universal
R-matrices, are constructed.Comment: 25 pages, LaTeX. Possible applications in relation with integrable
systems are pointed; new references adde
Theory of Luminescence Spectra of High-Density Electron-Hole Systems: Crossover from Excitonic Bose-Einstein Condenstation to Electron-Hole BCS State
We present a unified theory of luminescence spectra for highly excited
semiconductors, which is applicable both to the electron-hole BCS state and to
the exciton Bose-Einstein condensate. The crossover behavior between
electron-hole BCS state and exciton Bose-Einstein condensate clearly manifests
itself in the calculated luminescence spectra. The analysis is based on the
Bethe-Salpeter equation combined with the generalized
random-phase-approximation, which enables us to consider the multiple Coulomb
scattering and the quantum fluctuation associated with the center-of-mass
motion of electron-hole pairs. In the crossover regime, the calculated spectra
are essentially different from results obtained by the BCS-like mean-field
theory and the interacting Boson model. In particular, it is found that the
broad spectrum, arising from the recombination of electron-hole BCS state,
splits into the P- and P_2-luminescence bands with decreasing the particle
density. The dependence of these bands on the carrier density is in good
agreement with experiments for highly excited semiconductors.Comment: 9 pages, 4 figures, To appear in Solid State Communication
Erratum to: Brachypodium distachyon:Making hay with a wild grass [Trends in Plant Science 13 (2008) 172–177]
A barley PHD finger transcription factor that confers male sterility by affecting tapetal development
Controlling pollen development is of major commercial importance in generating hybrid crops and selective breeding, but characterized genes for male sterility in crops are rare, with no current examples in barley. However, translation of knowledge from model species is now providing opportunities to understand and manipulate such processes in economically important crops. We have used information from regulatory networks in Arabidopsis to identify and functionally characterize a barley PHD transcription factor MALE STERTILITY1 (MS1), which expresses in the anther tapetum and plays a critical role during pollen development. Comparative analysis of Arabidopsis, rice and Brachypodium genomes was used to identify conserved regions in MS1 for primer design to amplify the barley MS1 gene; RACE-PCR was subsequently used to generate the full-length sequence. This gene shows anther-specific tapetal expression, between late tetrad stage and early microspore release. HvMS1 silencing and overexpression in barley resulted in male sterility. Additionally, HvMS1 cDNA, controlled by the native Arabidopsis MS1 promoter, successfully complemented the homozygous ms1 Arabidopsis mutant. These results confirm the conservation of MS1 function in higher plants and in particular in temperate cereals. This has provided the first example of a characterized male sterility gene in barley, which presents a valuable tool for the future control of male fertility in barley for hybrid development
Identification, characterization, and gene expression analysis of nucleotide binding site (NB)-type resistance gene homologues in switchgrass
Abstract
Background
Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent bioenergy crop, a genome-wide comprehensive analysis of NB-LRR disease resistance genes has yet to be performed in switchgrass.
Results
In this study, we used a homology-based computational approach to identify 1011 potential NB-LRR resistance gene homologs (RGHs) in the switchgrass genome (v 1.1). In addition, we identified 40 RGHs that potentially contain unique domains including major sperm protein domain, jacalin-like binding domain, calmodulin-like binding, and thioredoxin. RNA-sequencing analysis of leaf tissue from ‘Alamo’, a rust-resistant switchgrass cultivar, and ‘Dacotah’, a rust-susceptible switchgrass cultivar, identified 2634 high quality variants in the RGHs between the two cultivars. RNA-sequencing data from field-grown cultivar ‘Summer’ plants indicated that the expression of some of these RGHs was developmentally regulated.
Conclusions
Our results provide useful insight into the molecular structure, distribution, and expression patterns of members of the NB-LRR gene family in switchgrass. These results also provide a foundation for future work aimed at elucidating the molecular mechanisms underlying disease resistance in this important bioenergy crop
Natural Variation in Brachypodium Links Vernalization and Flowering Time Loci as Major Flowering Determinants
The domestication of plants is underscored by the selection of agriculturally favorable developmental traits, including flowering time, which resulted in the creation of varieties with altered growth habits. Research into the pathways underlying these growth habits in cereals has highlighted the role of three main flowering regulators: VRN1, VRN2, and FT. Previous reverse genetic studies suggested that the roles of VRN1 and FT are conserved in Brachypodium distachyon, yet identified considerable ambiguity surrounding the role of VRN2. To investigate the natural diversity governing flowering time pathways in a non-domesticated grass, the reference B. distachyon accession Bd21 was crossed with the vernalization-dependent accession ABR6. Resequencing of ABR6 allowed the creation of a SNP-based genetic map at the F4 stage of the mapping population. Flowering time was evaluated in F4:5 families in five environmental conditions and three major loci were found to govern flowering time. Interestingly, two of these loci colocalize with the B. distachyon homologs of the major flowering pathway genes VRN2 and FT, whereas no linkage was observed at VRN1. Characterization of these candidates identified sequence and expression variation between the two parental genotypes, which may explain the contrasting growth habits. However, the identification of additional QTLs suggests that greater complexity underlies flowering time in this non-domesticated system. Studying the interaction of these regulators in B. distachyon provides insights into the evolutionary context of flowering time regulation in the Poaeceae, as well as elucidates the way humans have utilized the natural variation present in grasses to create modern temperate cereals
Endosperm development in Brachypodium distachyon
Grain development and its evolution in grasses remains poorly understood, despite cereals being our most important source of food. The grain, for which many grass species have been domesticated, is a single-seeded fruit with prominent and persistent endosperm. Brachypodium distachyon, a small wild grass, is being posited as a new model system for the temperate small grain cereals, but little is known about its endosperm development and how this compares with that of the domesticated cereals. A cellular and molecular map of domains within the developing Brachypodium endosperm is constructed. This provides the first detailed description of grain development in Brachypodium for the reference strain, Bd21, that will be useful for future genetic and comparative studies. Development of Brachypodium grains is compared with that of wheat. Notably, the aleurone is not regionally differentiated as in wheat, suggesting that the modified aleurone region may be a feature of only a subset of cereals. Also, the central endosperm and the nucellar epidermis contain unusually prominent cell walls that may act as a storage material. The composition of these cell walls is more closely related to those of barley and oats than to those of wheat. Therefore, although endosperm development is broadly similar to that of temperate small grain cereals, there are significant differences that may reflect its phylogenetic position between the Triticeae and rice
A comprehensive overview of grain development in Brachypodium distachyon variety Bd21
A detailed and comprehensive understanding of seed reserve accumulation is of great importance for agriculture and crop improvement strategies. This work is part of a research programme aimed at using Brachypodium distachyon as a model plant for cereal grain development and filling. The focus was on the Bd21-3 accession, gathering morphological, cytological, and biochemical data, including protein, lipid, sugars, starch, and cell-wall analyses during grain development. This study highlighted the existence of three main developmental phases in Brachypodium caryopsis and provided an extensive description of Brachypodium grain development. In the first phase, namely morphogenesis, the embryo developed rapidly reaching its final morphology about 18 d after fertilization (DAF). Over the same period the endosperm enlarged, finally to occupy 80% of the grain volume. During the maturation phase, carbohydrates were continuously stored, mainly in the endosperm, switching from sucrose to starch accumulation. Large quantities of β-glucans accumulated in the endosperm with local variations in the deposition pattern. Interestingly, new β-glucans were found in Brachypodium compared with other cereals. Proteins (i.e. globulins and prolamins) were found in large quantities from 15 DAF onwards. These proteins were stored in two different sub-cellular structures which are also found in rice, but are unusual for the Pooideae. During the late stage of development, the grain desiccated while the dry matter remained fairly constant. Brachypodium exhibits some significant differences with domesticated cereals. Beta-glucan accumulates during grain development and this cell wall polysaccharide is the main storage carbohydrate at the expense of starch
- …
