376 research outputs found
String Synchronizing Sets: Sublinear-Time BWT Construction and Optimal LCE Data Structure
Burrows-Wheeler transform (BWT) is an invertible text transformation that,
given a text of length , permutes its symbols according to the
lexicographic order of suffixes of . BWT is one of the most heavily studied
algorithms in data compression with numerous applications in indexing, sequence
analysis, and bioinformatics. Its construction is a bottleneck in many
scenarios, and settling the complexity of this task is one of the most
important unsolved problems in sequence analysis that has remained open for 25
years. Given a binary string of length , occupying machine
words, the BWT construction algorithm due to Hon et al. (SIAM J. Comput., 2009)
runs in time and space. Recent advancements (Belazzougui,
STOC 2014, and Munro et al., SODA 2017) focus on removing the alphabet-size
dependency in the time complexity, but they still require time.
In this paper, we propose the first algorithm that breaks the -time
barrier for BWT construction. Given a binary string of length , our
procedure builds the Burrows-Wheeler transform in time and
space. We complement this result with a conditional lower bound
proving that any further progress in the time complexity of BWT construction
would yield faster algorithms for the very well studied problem of counting
inversions: it would improve the state-of-the-art -time
solution by Chan and P\v{a}tra\c{s}cu (SODA 2010). Our algorithm is based on a
novel concept of string synchronizing sets, which is of independent interest.
As one of the applications, we show that this technique lets us design a data
structure of the optimal size that answers Longest Common
Extension queries (LCE queries) in time and, furthermore, can be
deterministically constructed in the optimal time.Comment: Full version of a paper accepted to STOC 201
Replica Placement on Bounded Treewidth Graphs
We consider the replica placement problem: given a graph with clients and
nodes, place replicas on a minimum set of nodes to serve all the clients; each
client is associated with a request and maximum distance that it can travel to
get served and there is a maximum limit (capacity) on the amount of request a
replica can serve. The problem falls under the general framework of capacitated
set covering. It admits an O(\log n)-approximation and it is NP-hard to
approximate within a factor of . We study the problem in terms of
the treewidth of the graph and present an O(t)-approximation algorithm.Comment: An abridged version of this paper is to appear in the proceedings of
WADS'1
Approximate Near Neighbors for General Symmetric Norms
We show that every symmetric normed space admits an efficient nearest
neighbor search data structure with doubly-logarithmic approximation.
Specifically, for every , , and every -dimensional
symmetric norm , there exists a data structure for
-approximate nearest neighbor search over
for -point datasets achieving query time and
space. The main technical ingredient of the algorithm is a
low-distortion embedding of a symmetric norm into a low-dimensional iterated
product of top- norms.
We also show that our techniques cannot be extended to general norms.Comment: 27 pages, 1 figur
Testing Conditional Independence of Discrete Distributions
We study the problem of testing \emph{conditional independence} for discrete
distributions. Specifically, given samples from a discrete random variable on domain , we want to distinguish,
with probability at least , between the case that and are
conditionally independent given from the case that is
-far, in -distance, from every distribution that has this
property. Conditional independence is a concept of central importance in
probability and statistics with a range of applications in various scientific
domains. As such, the statistical task of testing conditional independence has
been extensively studied in various forms within the statistics and
econometrics communities for nearly a century. Perhaps surprisingly, this
problem has not been previously considered in the framework of distribution
property testing and in particular no tester with sublinear sample complexity
is known, even for the important special case that the domains of and
are binary.
The main algorithmic result of this work is the first conditional
independence tester with {\em sublinear} sample complexity for discrete
distributions over . To complement our upper
bounds, we prove information-theoretic lower bounds establishing that the
sample complexity of our algorithm is optimal, up to constant factors, for a
number of settings. Specifically, for the prototypical setting when , we show that the sample complexity of testing conditional
independence (upper bound and matching lower bound) is
\[
\Theta\left({\max\left(n^{1/2}/\epsilon^2,\min\left(n^{7/8}/\epsilon,n^{6/7}/\epsilon^{8/7}\right)\right)}\right)\,.
\
Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics
Quantum computing is powerful because unitary operators describing the
time-evolution of a quantum system have exponential size in terms of the number
of qubits present in the system. We develop a new "Singular value
transformation" algorithm capable of harnessing this exponential advantage,
that can apply polynomial transformations to the singular values of a block of
a unitary, generalizing the optimal Hamiltonian simulation results of Low and
Chuang. The proposed quantum circuits have a very simple structure, often give
rise to optimal algorithms and have appealing constant factors, while usually
only use a constant number of ancilla qubits. We show that singular value
transformation leads to novel algorithms. We give an efficient solution to a
certain "non-commutative" measurement problem and propose a new method for
singular value estimation. We also show how to exponentially improve the
complexity of implementing fractional queries to unitaries with a gapped
spectrum. Finally, as a quantum machine learning application we show how to
efficiently implement principal component regression. "Singular value
transformation" is conceptually simple and efficient, and leads to a unified
framework of quantum algorithms incorporating a variety of quantum speed-ups.
We illustrate this by showing how it generalizes a number of prominent quantum
algorithms, including: optimal Hamiltonian simulation, implementing the
Moore-Penrose pseudoinverse with exponential precision, fixed-point amplitude
amplification, robust oblivious amplitude amplification, fast QMA
amplification, fast quantum OR lemma, certain quantum walk results and several
quantum machine learning algorithms. In order to exploit the strengths of the
presented method it is useful to know its limitations too, therefore we also
prove a lower bound on the efficiency of singular value transformation, which
often gives optimal bounds.Comment: 67 pages, 1 figur
Optimal solution of nonlinear equations
Journal ArticleWe survey recent worst case complexity results for the solution of nonlinear equations. Notes on worst and average case analysis of iterative algorithms and a bibliography of the subject are also included
Quantum Weak Coin Flipping
We investigate weak coin flipping, a fundamental cryptographic primitive
where two distrustful parties need to remotely establish a shared random bit. A
cheating player can try to bias the output bit towards a preferred value. For
weak coin flipping the players have known opposite preferred values. A weak
coin-flipping protocol has a bias if neither player can force the
outcome towards their preferred value with probability more than
. While it is known that all classical protocols have
, Mochon showed in 2007 [arXiv:0711.4114] that quantumly
weak coin flipping can be achieved with arbitrarily small bias (near perfect)
but the best known explicit protocol has bias (also due to Mochon, 2005
[Phys. Rev. A 72, 022341]). We propose a framework to construct new explicit
protocols achieving biases below . In particular, we construct explicit
unitaries for protocols with bias approaching . To go below, we introduce
what we call the Elliptic Monotone Align (EMA) algorithm which, together with
the framework, allows us to numerically construct protocols with arbitrarily
small biases.Comment: 98 pages split into 3 parts, 10 figures; For updates and contact
information see https://atulsingharora.github.io/WCF. Version 2 has minor
improvements. arXiv admin note: text overlap with arXiv:1402.7166 by other
author
The systematic guideline review: method, rationale, and test on chronic heart failure
Background: Evidence-based guidelines have the potential to improve healthcare. However, their de-novo-development requires substantial resources-especially for complex conditions, and adaptation may be biased by contextually influenced recommendations in source guidelines. In this paper we describe a new approach to guideline development-the systematic guideline review method (SGR), and its application in the development of an evidence-based guideline for family physicians on chronic heart failure (CHF).
Methods: A systematic search for guidelines was carried out. Evidence-based guidelines on CHF management in adults in ambulatory care published in English or German between the years 2000 and 2004 were included. Guidelines on acute or right heart failure were excluded. Eligibility was assessed by two reviewers, methodological quality of selected guidelines was appraised using the AGREE instrument, and a framework of relevant clinical questions for diagnostics and treatment was derived. Data were extracted into evidence tables, systematically compared by means of a consistency analysis and synthesized in a preliminary draft. Most relevant primary sources were re-assessed to verify the cited evidence. Evidence and recommendations were summarized in a draft guideline.
Results: Of 16 included guidelines five were of good quality. A total of 35 recommendations were systematically compared: 25/35 were consistent, 9/35 inconsistent, and 1/35 un-rateable (derived from a single guideline). Of the 25 consistencies, 14 were based on consensus, seven on evidence and four differed in grading. Major inconsistencies were found in 3/9 of the inconsistent recommendations. We re-evaluated the evidence for 17 recommendations (evidence-based, differing evidence levels and minor inconsistencies) - the majority was congruent. Incongruity was found where the stated evidence could not be verified in the cited primary sources, or where the evaluation in the source guidelines focused on treatment benefits and underestimated the risks. The draft guideline was completed in 8.5 man-months. The main limitation to this study was the lack of a second reviewer.
Conclusion: The systematic guideline review including framework development, consistency analysis and validation is an effective, valid, and resource saving-approach to the development of evidence-based guidelines
Nonlinear convex and concave relaxations for the solutions of parametric ODEs
SUMMARY Convex and concave relaxations for the parametric solutions of ordinary differential equations (ODEs) are central to deterministic global optimization methods for nonconvex dynamic optimization and open-loop optimal control problems with control parametrization. Given a general system of ODEs with parameter dependence in the initial conditions and right-hand sides, this work derives sufficient conditions under which an auxiliary system of ODEs describes convex and concave relaxations of the parametric solutions, pointwise in the independent variable. Convergence results for these relaxations are also established. A fully automatable procedure for constructing an appropriate auxiliary system has been developed previously by the authors. Thus, the developments here lead to an efficient, automatic method for computing convex and concave relaxations for the parametric solutions of a very general class nonlinear ODEs. The proposed method is presented in detail for a simple example problem
- …
