56 research outputs found

    Recursive quantum repeater networks

    Full text link
    Internet-scale quantum repeater networks will be heterogeneous in physical technology, repeater functionality, and management. The classical control necessary to use the network will therefore face similar issues as Internet data transmission. Many scalability and management problems that arose during the development of the Internet might have been solved in a more uniform fashion, improving flexibility and reducing redundant engineering effort. Quantum repeater network development is currently at the stage where we risk similar duplication when separate systems are combined. We propose a unifying framework that can be used with all existing repeater designs. We introduce the notion of a Quantum Recursive Network Architecture, developed from the emerging classical concept of 'recursive networks', extending recursive mechanisms from a focus on data forwarding to a more general distributed computing request framework. Recursion abstracts independent transit networks as single relay nodes, unifies software layering, and virtualizes the addresses of resources to improve information hiding and resource management. Our architecture is useful for building arbitrary distributed states, including fundamental distributed states such as Bell pairs and GHZ, W, and cluster states.Comment: 14 page

    Decoding the human brain tissue response to radiofrequency excitation using a biophysical-model-free deep MRI on a chip framework

    Full text link
    Magnetic resonance imaging (MRI) relies on radiofrequency (RF) excitation of proton spin. Clinical diagnosis requires a comprehensive collation of biophysical data via multiple MRI contrasts, acquired using a series of RF sequences that lead to lengthy examinations. Here, we developed a vision transformer-based framework that captures the spatiotemporal magnetic signal evolution and decodes the brain tissue response to RF excitation, constituting an MRI on a chip. Following a per-subject rapid calibration scan (28.2 s), a wide variety of image contrasts including fully quantitative molecular, water relaxation, and magnetic field maps can be generated automatically. The method was validated across healthy subjects and a cancer patient in two different imaging sites, and proved to be 94% faster than alternative protocols. The deep MRI on a chip (DeepMonC) framework may reveal the molecular composition of the human brain tissue in a wide range of pathologies, while offering clinically attractive scan times.This project was funded by the European Union (ERC, BabyMagnet, project no. 101115639). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for the

    Imaging the boundaries—innovative tools for microscopy of living cells and real-time imaging

    Get PDF
    Recently, light microscopy moved back into the spotlight, which is mainly due to the development of revolutionary technologies for imaging real-time events in living cells. It is truly fascinating to see enzymes “at work” and optically acquired images certainly help us to understand biological processes better than any abstract measurements. This review aims to point out elegant examples of recent cell-biological imaging applications that have been developed with a chemical approach. The discussed technologies include nanoscale fluorescence microscopy, imaging of model membranes, automated high-throughput microscopy control and analysis, and fluorescent probes with a special focus on visualizing enzyme activity, free radicals, and protein–protein interaction designed for use in living cells

    The Longitudinal Aging Study Amsterdam: cohort update 2016 and major findings

    Full text link

    Ultrasonic computed tomography imaging of iron oxide nanoparticles

    Full text link

    MRI and Ultrasound Imaging of Nanoparticles for Medical Diagnosis

    Full text link

    Molecular MRI-Based Monitoring of Cancer Immunotherapy Treatment Response

    No full text
    Immunotherapy constitutes a paradigm shift in cancer treatment. Its FDA approval for several indications has yielded improved prognosis for cases where traditional therapy has shown limited efficiency. However, many patients still fail to benefit from this treatment modality, and the exact mechanisms responsible for tumor response are unknown. Noninvasive treatment monitoring is crucial for longitudinal tumor characterization and the early detection of non-responders. While various medical imaging techniques can provide a morphological picture of the lesion and its surrounding tissue, a molecular-oriented imaging approach holds the key to unraveling biological effects that occur much earlier in the immunotherapy timeline. Magnetic resonance imaging (MRI) is a highly versatile imaging modality, where the image contrast can be tailored to emphasize a particular biophysical property of interest using advanced engineering of the imaging pipeline. In this review, recent advances in molecular-MRI based cancer immunotherapy monitoring are described. Next, the presentation of the underlying physics, computational, and biological features are complemented by a critical analysis of the results obtained in preclinical and clinical studies. Finally, emerging artificial intelligence (AI)-based strategies to further distill, quantify, and interpret the image-based molecular MRI information are discussed in terms of perspectives for the future.</jats:p

    AI in MRI: Computational Frameworks for a Faster, Optimized, and Automated Imaging Workflow

    No full text
    Over the last decade, artificial intelligence (AI) has made an enormous impact on a wide range of fields, including science, engineering, informatics, finance, and transportation [...
    corecore