277 research outputs found

    The strength of the radial-breathing mode in single-walled carbon nanotubes

    Full text link
    We show by ab initio calculations that the electron-phonon coupling matrix element M of the radial breathing mode in single-walled carbon nanotubes depends strongly on tube chirality. For nanotubes of the same diameter the coupling strength |M|^2 is up to one order of magnitude stronger for zig-zag than for armchair tubes. For (n,m) tubes M depends on the value of (n-m) mod 3, which allows to discriminate semiconducting nano tubes with similar diameter by their Raman scattering intensity. We show measured resonance Raman profiles of the radial breathing mode which support our theoretical predictions

    ab inito local vibrational modes of light impurities in silicon

    Full text link
    We have developed a formulation of density functional perturbation theory for the calculation of vibrational frequencies in molecules and solids, which uses numerical atomic orbitals as a basis set for the electronic states. The (harmonic) dynamical matrix is extracted directly from the first order change in the density matrix with respect to infinitesimal atomic displacements from the equilibrium configuration. We have applied this method to study the vibrational properties of a number of hydrogen-related complexes and light impurities in silicon. The diagonalization of the dynamical matrix provides the vibrational modes and frequencies, including the local vibrational modes (LVMs) associated with the defects. In addition to tests on simple molecules, results for interstitial hydrogen, hydrogen dimers, vacancy-hydrogen and self-interstitial-hydrogen complexes, the boron-hydrogen pair, substitutional C, and several O-related defects in c-Si are presented. The average error relative to experiment for the aprox.60 predicted LVMs is about 2% with most highly harmonic modes being extremely close and the more anharmonic ones within 5-6% of the measured values.Comment: 18 pages, 1 figur

    Tight Binding Molecular Dynamics Studies of Boron Assisted Nanotube Growth

    Full text link
    In this paper we report a theoretical study of the effects of the presence of boron in growing carbon nanotubes. We employ a well established Tight Binding model to describe the interactions responsible for the energetics of these systems, combined with the Molecular Dynamics simulation technique and Structural Relaxation calculations. We find, in agreement with the previous theoretical/experimental work of Blase {\em et al.} [{\em Phys. Rev. Lett.} {\bf 83}, 5078 (1999)], that boron favors (n,0) (zig-zag) tubular structures over (n,n) (arm-chair) ones by stabilizing the zig-zag edge. Furthermore, it is shown that boron has the effect of delaying the tube closure process, a fact which could explain the improved aspect ratio experimentally observed in nanotubes synthesized in the presence of boron. Our dynamical simulations lead us to propose a mechanism through which this extension of the closure time can be explained.Comment: 11 pages, 6 figures, to appear in J. Chem. Phy

    Insulating Behavior of an Amorphous Graphene Membrane

    Full text link
    We investigate the charge transport properties of planar amorphous graphene that is fully topologically disordered, in the form of sp2 three-fold coordinated networks consisting of hexagonal rings, but also including many pentagons and heptagons distributed in a random fashion. Using the Kubo transport methodology and the Lanczos method, the density of states, mean free paths and semiclassical conductivities of such amorphous graphene membranes are computed. Despite a large increase in the density of states close to the charge neutrality point, all electronic properties are dramatically degraded, evidencing an Anderson insulating state caused by topological disorder alone. These results are supported by Landauer-Buttiker conductance calculations, which show a localization length as short as 5 nanometer

    Origin Of Current-Induced Forces In An Atomic Gold Wire: A First Principles Study

    Get PDF
    We address the microscopic origin of the current-induced forces by analyzing results of first principles density functional calculations of atomic gold wires connected to two gold electrodes with different electrochemical potentials. We find that current induced forces are closely related to the chemical bonding, and arise from the rearrangement of bond charge due to the current flow. We explain the current induced bond weakening/strengthening by introducing bond charges decomposed into electrode components.Comment: 4 pages, 4 figure

    First-principles characterization of the electronic structure of the molecular superconductor beta-(BEDT-TTF)2IBr2

    Get PDF
    The electronic structure of the molecular superconductor β−(BEDT−TTF)2IBr2 has been studied by means of first-principles density functional calculations. The calculated transverse cross section of the Fermi surface is in excellent agreement with that reconstructed from magnetoresistance measurements. It is shown that the cylindrical Fermi surface exhibits warping (the dispersion along the interlayer direction is of the order of 0.8–1.7 % of the dispersion in the conducting plane) and that it does not contain any additional small pocket. These features provide support for a recent proposal concerning the much debated question of the origin of the slow magnetoresistance oscillations exhibited by this material.Peer reviewe

    Vibrational properties of amorphous silicon from tight-binding O(N) calculation

    Full text link
    We present an O(N) algorithm to study the vibrational properties of amorphous silicon within the framework of tight-binding approach. The dynamical matrix elements have been evaluated numerically in the harmonic approximation exploiting the short-range nature of the density matrix to calculate the vibrational density of states which is then compared with the same obtained from a standard O(N4N^4) algorithm. For the purpose of illustration, an 1000-atom model is studied to calculate the localization properties of the vibrational eigenstates using the participation numbers calculation.Comment: 5 pages including 5 ps figures; added a figure and a few references; accepted in Phys. Rev.
    corecore