3,153 research outputs found

    Experimental investigation of stability and stall flutter of a free-floating wing V/STOL model

    Get PDF
    An experimental investigation was made of the static and dynamic stability characteristics of a one-fourth scale model of a tilt-propeller free-wing V/STOL aircraft. The effects of wing pivot location, wing chord, trailing-edge angle, propeller tilt angle, and thrust were studied, and a limited evaluation was made of high-lift devices. A dynamically similar wing was used to measure frequency and damping ratio from transient response data in the linear aerodynamic regime and the results were compared to quasi-steady and unsteady aerodynamic theory. It was found that at high trim angles of attack, in the nonlinear aerodynamic regime, stall flutter oscillations occurred with typical amplitudes ranging from 15 to 20 deg. Wing control tab deflection was effective in initiating and terminating stall flutter but variations in configuration or operating conditions did not greatly influence the occurrence of characteristics of the oscillations

    Tape-Slide Programmer

    Get PDF

    Hingeless helicopter rotor with improved stability

    Get PDF
    Improved stability was provided in a hingeless helicopter rotor by inclining the principal elastic flexural axes and coupling pitching of the rotor blade with the lead-lag bending of the blade. The primary elastic flex axes were inclined by constructing the blade of materials that display non-uniform stiffness, and the specification described various cross section distributions and the resulting inclined flex axes. Arrangements for varying the pitch of the rotor blade in a predetermined relationship with lead-lag bending of the blade, i.e., bending of the blade in a plane parallel to its plane of rotation were constructed

    On the nonlinear deformation geometry of Euler-Bernoulli beams

    Get PDF
    Nonlinear expressions are developed to relate the orientation of the deformed beam cross section, torsion, local components of bending curvature, angular velocity, and virtual rotation to deformation variables. The deformed beam kinematic quantities are proven to be equivalent to those derived from various rotation sequences by identifying appropriate changes of variable based on fundamental uniqueness properties of the deformed beam geometry. The torsion variable used is shown to be mathematically analogous to an axial deflection variable commonly used in the literature. Rigorous applicability of Hamilton's principle to systems described by a class of quasi-coordinates that includes these variables is formally established

    Development of an external ceramic insulation for the space shuttle orbiter. Part 3: Development of stabilized aluminum phosphate fibers

    Get PDF
    The development of reusable surface insulation materials that are thermal shock resistant and highly refractory is discussed. A stabilized, high-cristobalite, aluminum orthophosphate fiber was developed and found to possess the desired qualities. The application of such a material to heat shielding for space shuttles is examined

    Rotorcraft aeroelastic stability

    Get PDF
    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability in hover and forward flight, and analysis of tilt-rotor dynamic stability are considered. Results of parametric investigations of system behavior are presented, and correlation between theoretical results and experimental data from small and large scale wind tunnel and flight testing are discussed

    Survey of Army/NASA rotorcraft aeroelastic stability research

    Get PDF
    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability are considered. Results of parametric investigations of system behavior are presented, and correlations between theoretical results and experimental data from small- and large-scale wind tunnel and flight testing are discussed

    New design of hingeless helicopter rotor improves stability

    Get PDF
    Cantilever blades are attached directly to rotor hub, thereby substantially reducing cost and complexity and increasing reliability of helicopter rotor. Combination of structural flap-lag coupling and pitch-lag coupling provides damping of 6 to 10%, depending on magnitude of coupling parameters

    A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK

    Get PDF
    Background Colorectal cancer (CRC) is an illness strongly influenced by sex and gender, with mortality rates in males significantly higher than females. There is still a dearth of understanding on where sex differences exist along the pathway from presentation to survival. The aim of this review is to identify where actions are needed to improve outcomes for both sexes, and to narrow the gap for CRC. Methods A cross-sectional review of national data was undertaken to identify sex differences in incidence, screening uptake, route to diagnosis, cancer stage at diagnosis and survival, and their influence in the sex differences in mortality. Results Overall incidence is higher in men, with an earlier age distribution, however, important sex differences exist in anatomical site. There were relatively small differences in screening uptake, route to diagnosis, cancer staging at diagnosis and survival. Screening uptake is higher in women under 69 years. Women are more likely to present as emergency cases, with more men diagnosed through screening and two-week-wait. No sex differences are seen in diagnosis for more advanced disease. Overall, age-standardised 5-year survival is similar between the sexes. Conclusions As there are minimal sex differences in the data from routes to diagnosis to survival, the higher mortality of colorectal cancer in men appears to be a result of exogenous and/or endogenous factors pre-diagnosis that lead to higher incidence rates. There are however, sex and gender differences that suggest more targeted interventions may facilitate prevention and earlier diagnosis in both men and women
    corecore