290 research outputs found
Rapid Generation of Flood Maps Using Dual-Polarimetric Synthetic Aperture Radar Imagery
Rapid generation of synthetic aperture radar (SAR) based flood extent and flood depth maps provide valuable data in disaster response efforts. We present a simple but powerful method using dual polarimetric SAR imagery. A RGB false-color map is generated using pre- and post-flooding imagery, allowing operators to distinguish between existing standing water in pre-flooding data and recently flooded areas. This method works very well in areas of standing water, while large omission errors can be seen in urban areas due to the double-bounce effect. A flood depth map is also estimated by using an external DEM. Compared with FEMA flood product, flood water depth from the proposed method showed low bias with small dispersion. This automatic flood mapping system will contribute to the rapid assessment for disaster relief efforts
Tri-Frequency Synthetic Aperture Radar for the Measurements of Snow Water Equivalent
SWESARR (Snow Water Equivalent Synthetic Aperture Radar and Radiometer) is an airborne instrument developed at the NASA Goddard Space Flight Center for the retrieval of Snow Water Equivalent. SWESARR was specifically designed to measure co-located active and passive signals using a high resolution and multi-frequency Synthetic Aperture Radar (SAR) and a multifrequency radiometer. SWESARRs Synthetic Aperture Radar (SAR) system is made up of three independent radar units that operate in the X, Ku-Low, and Ku-High bands with bandwidths up to 200 MHz, and acquires data in two polarizations (dual-polarization radar). The difference in sensitivity of the backscatter signals to snow microstructure, in conjunctions with radiometer measurements, permits an accurate estimation of the snow water equivalent (SWE)
Tri-Frequency Synthetic Aperture Radar for the Measurements of Snow Water Equivalent
A new airborne synthetic aperture radar (SAR) system was recently developed for the estimation of snow water equivalent (SWE). The radar is part of the SWESARR (Snow Water Equivalent Synthetic Aperture Radar and Radiometer) instrument, an active passive microwave system specifically designed for the accurate estimation of SWE. The dual polarization (VV, VH) radar operates at three frequency bands (9.65 GHz, 13.6 GHz, and 17.25 GHz), with bandwidths of up to 200 MHz. The radar flew its first flight campaign in November 2019, along with SWESARRs - already operational radiometer. The radar collected comprehensive data sets over various terrains that show a successful system performance. The inst slated to participate in future SnowEx campaigns
Forest Structure Retrieval from Ecosar P-Band Single-Pass Interferometry
EcoSAR is a single-pass (dual antenna) digital beamforming, P-band radar system that is designed for remote sensing of dense forest structure. Forest structure retrievals require the measurement related to the vertical dimension, for which several techniques have been developed over the years. These techniques use polarimetric and interferometric aspects of the SAR data, which can be collected using EcoSAR. In this paper we describe EcoSAR system in light of its interferometric capabilities and investigate forest structure retrieval techniques
Forest Structure Retrieval From EcoSAR P-Band Single-Pass Interferometry
EcoSAR is a single-pass (dual antenna) digital beamforming, P-band radar system that is designed for remote sensing of dense forest structure. Forest structure retrievals require the measurement related to the vertical dimension, for which several techniques have been developed over the years. These techniques use polarimetric and interferometric aspects of the SAR data, which can be collected using EcoSAR. In this paper we describe EcoSAR system in light of its interferometric capabilities and investigate forest structure retrieval techniques
Surface velocity and mass balance of Livingston Island ice cap, Antarctica
The mass budget of the ice caps surrounding the Antarctica Peninsula and, in particular, the partitioning of its main components are poorly known. Here we approximate frontal ablation (i.e. the sum of mass losses by calving and submarine melt) and surface mass balance of the ice cap of Livingston Island, the second largest island in the South Shetland Islands archipelago, and analyse variations in surface velocity for the period 2007–2011. Velocities are obtained from feature tracking using 25 PALSAR-1 images, and used in conjunction with estimates of glacier ice thicknesses inferred from principles of glacier dynamics and ground-penetrating radar observations to estimate frontal ablation rates by a flux-gate approach. Glacier-wide surface mass-balance rates are approximated from in situ observations on two glaciers of the ice cap. Within the limitations of the large uncertainties mostly due to unknown ice thicknesses at the flux gates, we find that frontal ablation (−509 ± 263 Mt yr−1, equivalent to −0.73 ± 0.38 m w.e. yr−1 over the ice cap area of 697 km2) and surface ablation (−0.73 ± 0.10 m w.e. yr−1) contribute similar shares to total ablation (−1.46 ± 0.39 m w.e. yr−1). Total mass change (δM = −0.67 ± 0.40 m w.e. yr−1) is negative despite a slightly positive surface mass balance (0.06 ± 0.14 m w.e. yr−1). We find large interannual and, for some basins, pronounced seasonal variations in surface velocities at the flux gates, with higher velocities in summer than in winter. Associated variations in frontal ablation (of ~237 Mt yr−1; −0.34 m w.e. yr−1) highlight the importance of taking into account the seasonality in ice velocities when computing frontal ablation with a flux-gate approach
Polarimetric SAR Interferometry Evaluation in Mangroves
TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data)
Remote Sensing Of The Cryosphere In High Mountain Asia
High Mountain Asia (HMA), often referred to as the "third pole" of the world because its high elevation glaciers, contains the largest amount of fresh water outside the polar ice sheets. The region's hydrology is strongly controlled by variations in the timing and distribution of runoff from snow and glacier melt. Recent improvements in remote sensing technologies and atmospheric / land surface models provides new approaches for assessing the HMA cryosphere. A recently-funded NASA program aims to apply these tools to advance understanding of HMA cryospheric processes. Here we present an overview of planned team activities during the three-year project
Radio Frequency Interference Detection and Mitigation Techniques Using Data from Ecosar 2014 Flight Campaign
Radio frequency interference (RFI) has strong influence on wide band airborne radar systems, especially operaingat L-band (1-2 GHz) or lower frequencies. EcoSAR is a P-band digital beamforming radar system, and RFI has tobe removed from raw echoes to obtain science quality data. In this paper we describe the current methodologyused to tackle RFI with EcoSAR, and provide an example on its performance. Finally, we discuss the advantagesand disadvantages of the method and mention potential improvements
First Image Products from EcoSAR - Osa Peninsula, Costa Rica
Designed especially for forest ecosystem studies, EcoSAR employs state-of-the-art digital beamforming technology to generate wide-swath, high-resolution imagery. EcoSARs dual antenna single-pass imaging capability eliminates temporal decorrelation from polarimetric and interferometric analysis, increasing the signal strength and simplifying models used to invert forest structure parameters. Antennae are physically separated by 25 meters providing single pass interferometry. In this mode the radar is most sensitive to topography. With 32 active transmit and receive channels, EcoSARs digital beamforming is an order of magnitude more versatile than the digital beamforming employed on the upcoming NISAR mission. EcoSARs long wavelength (P-band, 435 MHz, 69 cm) measurements can be used to simulate data products for ESAs future BIOMASS mission, allowing scientists to develop algorithms before the launch of the satellite. EcoSAR can also be deployed to collect much needed data where BIOMASS satellite wont be allowed to collect data (North America, Europe and Arctic), filling in the gaps to keep a watchful eye on the global carbon cycle. EcoSAR can play a vital role in monitoring, reporting and verification schemes of internationals programs such as UN-REDD (United Nations Reducing Emissions from Deforestation and Degradation) benefiting global society. EcoSAR was developed and flown with support from NASA Earth Sciences Technology Offices Instrument Incubator Program
- …
