272 research outputs found

    Effect of Hemodialysis on Plasma Glucose Profile and Plasma Level of Liraglutide in Patients with Type 2 Diabetes Mellitus and End-Stage Renal Disease: A Pilot Study

    Get PDF
    The effect of hemodialysis on the plasma glucose profile and liraglutide level after liraglutide injection was investigated in patients with diabetes and end-stage renal disease (ESRD). Either 0.6 mg or 0.9 mg liraglutide was subcutaneously administered daily to 10 Japanese type 2 diabetic patients with ESRD. Hemodialysis was conducted on days 1 and 3. Plasma liraglutide and glucose concentrations were measured by enzyme-linked immunosorbent assay and a continuous glucose monitoring system, respectively. The safety profile of liraglutide was also assessed. Hemodialysis had no effect on the pharmacokinetic parameters of liraglutide in patients with diabetes and ESRD; the maximum plasma concentration (Cmax), tmax, area under the concentration-time curve (AUC), and CL/f were unaltered. Similarly, hemodialysis did not affect the mean or minimum glucose levels, AUC, or duration of hyperglycemia (>180 mg/dL) and hypoglycemia (<70 mg/dL) following liraglutide administration. However, significant increases in mean amplitude of glycemic excursions (MAGE) and standard deviation (SD) as markers of glucose fluctuation, and the maximum glucose level were observed during hemodialysis. No adverse events, including hypoglycemia, were observed after liraglutide injection, either off-hemodialysis (day 2) or on-hemodialysis (day 3). Liraglutide was well tolerated in patients with type 2 diabetes and ESRD undergoing hemodialysis. The present results suggested that hemodialysis did not affect the pharmacokinetic profile of liraglutide or most glycemic indices, with the exception of MAGE, SD, and the maximum glucose level. These results suggested that it may be possible to use liraglutide during hemodialysis for diabetes with ESRD, without dose adjustment. Trial Registration UMIN Clinical Trials Registry (UMIN-CTR) UMIN000010159.\ud \u

    Relationship between dietary patterns and risk factors for cardiovascular disease in patients with type 2 diabetes mellitus: a cross-sectional study

    Get PDF
    BackgroundWhile some dietary patterns are associated with the incidence of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD), the relationship between dietary pattern and risk factors for CVD in patients with T2DM remains to be clarified. The aim of this study was to identify dietary patterns and investigate the relationship between dietary patterns and potential risk factors for CVD in patients with T2DM.MethodsThe study participants comprised 726 Japanese T2DM outpatients free of history of CVD. Life styles were analyzed using self-reported questionnaires. The relationship between dietary patterns, identified by factor analysis, and potential risk factors for CVD was investigated by linear and logistic regression analyses.ResultsSix dietary patterns were identified by factor analysis. Especially, three dietary patterns were associated with risk factors for CVD. The “Seaweeds, Vegetables, Soy products and Mushrooms” pattern, characterized by high consumption of seaweeds, soy products and mushrooms, was associated with lower use of diabetes medication and healthier lifestyles. The “Noodle and Soup” pattern, characterized by high consumption of noodle and soup was associated with higher body mass index, alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transpeptidase and triglyceride levels. The “Fruit, Dairy products and Sweets” pattern was associated with lower γ-glutamyl transpeptidase levels, blood pressure, albuminuria and brachial-ankle pulse wave velocity.ConclusionsThe findings suggested that dietary patterns correlated with risk factors for CVD in T2DM patients

    Comparative evaluation of clinical glycemic control markers treated with imeglimin and its effect on erythrocytes in patients with type 2 diabetes mellitus: study protocol of a single-arm, open-label, prospective, exploratory trial

    Get PDF
    Background: Imeglimin is a novel type 2 diabetes (T2D) drug that is expected to improve mitochondrial function. In its phase 3 clinical trials in Japanese patients with T2D, the hemoglobin A1c (HbA1c) decrease following imeglimin administration was slow, reaching a plateau after 20–24 weeks of treatment. In general, the erythrocyte lifespan may be a factor when HbA1c shows an abnormal value. Therefore, this study will comparatively evaluate HbA1c and other markers of glycemic control in patients with T2D after imeglimin administration and also examine the effects of imeglimin on erythrocytes.Methods: This single-arm, open-label, prospective, exploratory study is designed to evaluate the divergence between HbA1c and glycoalbumin (GA) or 1,5-anhydroglucitol (1,5-AG) and the glycemic reduction rate in 30 patients with T2D with inadequate glycemic control when imeglimin 2,000 mg is administered for 6 months. In addition, we will examine the effect on erythrocytes, the presumed cause of this divergence. We will measure sustained glycemic variability using flash glucose monitoring and examine the relationship between changes in these indices and HbA1c. Moreover, because prolonged erythrocyte lifespan is a possible cause of falsely high HbA1c levels, erythrocyte lifespan, erythrocyte deformability, and hemoglobin concentration will be evaluated as effects of imeglimin on erythrocytes. Furthermore, if imeglimin has an ameliorative effect on erythrocyte deformability, it may improve peripheral arterial disease; thus, we will also evaluate the toe-brachial pressure index, a measure of this effect.Discussion: In this study, if imeglimin administration results in diverging rates of hypoglycemic effect between HbA1c and GA or 1,5-AG and prolongs erythrocyte lifespan, GA and 1,5-AG, rather than HbA1c, will be considered appropriate measures of the hypoglycemic effect in the early stages of imeglimin administration. If imeglimin improves erythrocyte deformability, it may also be a new treatment strategy for peripheral arterial disease, a chronic complication of T2D.Ethics and dissemination: The study protocol was scientifically and ethically reviewed and approved by the Certified Clinical Research Review Board of Toho University (approval number: THU22002). The study protocol was registered in the Japan Registry of Clinical Trials (jRCT) in December 2022 (jRCTs031220489)

    Protocol of a Prospective Observational Study on the Relationship Between Glucose Fluctuation and Cardiovascular Events in Patients with Type 2 Diabetes

    Get PDF
    IntroductionA recent study demonstrated that large glucose fluctuations were associated with an increased incidence of cardiovascular disease (CVD) in patients with type 2 diabetes mellitus (T2DM) and acute myocardial infarction. However, it is unknown whether glucose fluctuations are related to the incidence of CVD or the progression of atherosclerosis in patients with T2DM with no apparent history of CVD. In this protocol, we will be investigating the relationships of glucose fluctuations evaluated by continuous glucose monitoring (CGM) to the incidence of composite cardiovascular events and the progression of atherosclerosis in patients with T2DM who had no apparent history of CVD.MethodsThis is a prospective, multicenter, 5-year follow-up observational study. Between April 2018 and October 2019, 1000 participants are expected to be recruited at 34 medical institutions. CGM using FreeStyle Libre Pro is useful for evaluating glucose fluctuations by continuously monitoring glucose levels in interstitial fluid for up to 14 days. The primary study outcome is the relationship between fluctuations in glucose levels evaluated by CGM and the incidence of composite cardiovascular events. Secondary outcomes include the relationships of fluctuations in glucose levels evaluated by CGM to changes in carotid intima media thickness evaluated by echography or grayscale median (an index of tissue characteristics of the carotid wall), brachial–ankle pulse wave velocity, development or progression of diabetic retinopathy or nephropathy, quality-of-life-related diabetes therapy, quality of sleep, development of dementia, and autonomic nerve function.Planned OutcomeThis protocol is designed to investigate the relationship between glucose fluctuations and the incidence of composite cardiovascular events. We completed the registration of 1000 participants in March 2019. Thus, results will be available in 2024. We expect that evaluating glucose fluctuations will aid the identification of patients with a high probability of developing CVD.Trial RegistrationClinicalTrials.gov identifier, UMIN000032325

    Clinical utility of brachial-ankle pulse wave velocity in the prediction of cardiovascular events in diabetic patients

    Get PDF
    BACKGROUND: Brachial-ankle pulse wave velocity (baPWV) is a method to estimate arterial stiffness, which reflects the stiffness of both the aorta and peripheral artery; it would be applicable to general practice, since its measurementis automated. The aim of this study was to evaluate whether baPWV can be predictors of future cardiovascular events (CVE) in diabetic patients. METHODS: We prospectively evaluated the association between baPWV or carotid intima-media thickness (carotid IMT) at baseline and new onset of CVE in 1040 type 2 diabetic patients without CVE. The predictability of baPWV and/or carotid IMT for identifying patients at high risk for CVE was evaluated by time-dependent receiver-operating-characteristic (ROC) curve analysis. RESULTS: During a median follow-up of 7.5 years, 113 had new CVD events. The cumulative incidence rates of CVE were significantly higher in patients with high baPWV values (≥1550 cm/s) as compared to those with low baPWV values (<1550 cm/s) (p < 0.001, log-rank test). Similarly, the cumulative incidence rate of CVE was significantly higher in patients with higher maximum carotid IMT (maxIMT) values (≥1.0 mm) as compared to those with lower maxIMT values (<1.0 mm) (p < 0.001, log-rank test). Subjects with both “high PWV” and “high IMT” had a significantly higher risk of developing CVE as compared to those with either “high PWV” or “high IMT,” as well as those with neither. A multivariate Cox proportional hazards regression model revealed that both baPWV (HR = 1.30, [95%CI: 1.07-1.57]; p = 0.009) and maxIMT (HR = 1.20, [95%CI: 1.01-1.41]; p = 0.033) were independent predictors for CVE, even after adjustment for the conventional risk factors. Time-dependent ROC curve analyses revealed that the addition of maxIMT to the Framingham risk score resulted in significant increase in AUC (from 0.60 [95%CI: 0.54-0.67] to 0.63 [95%CI: 0.60-0.82]; p = 0.01). Notably, the addition of baPWV to the Framingham risk score and maxIMT resulted in further and significant (p = 0.02) increase in AUC (0.72 [95%CI: 0.67-0.78]). CONCLUSIONS: Evaluation of baPWV, in addition to carotid IMT and conventional risk factors, improved the ability to identify the diabetic individuals with high risk for CVE. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12933-014-0128-5) contains supplementary material, which is available to authorized users
    corecore