1,646 research outputs found

    Torsional Strength of Nickel Steel and Duralumin Tubing as Affected by the Ratio of Diameter to Gage Thickness

    Get PDF
    This investigation was made at the request of the Bureau of Aeronautics. Since the ordinary torsion formula is based on elastic resistance to deformation, it is inaccurate for determination of ultimate stresses in thin wall tubing subjected to torsional loads. It has been found that the torsional modulus of rupture varies with the ratio of diameter to gage thickness and the object of these tests was to determine the extent of these variations for subject materials. This is somewhat of a prorogation of work done by the Army Air Service at McCook Field

    Likelihood-free inference of experimental Neutrino Oscillations using Neural Spline Flows

    Full text link
    In machine learning, likelihood-free inference refers to the task of performing an analysis driven by data instead of an analytical expression. We discuss the application of Neural Spline Flows, a neural density estimation algorithm, to the likelihood-free inference problem of the measurement of neutrino oscillation parameters in Long Baseline neutrino experiments. A method adapted to physics parameter inference is developed and applied to the case of the disappearance muon neutrino analysis at the T2K experiment.Comment: 10 pages, 3 figure

    Classical and quantum-linearized descriptions of degenerate optomechanical parametric oscillators

    Full text link
    Recent advances in the development of modern quantum technologies have opened the possibility of studying the interplay between spontaneous parametric down-conversion and optomechanics, two of the most fundamental nonlinear optical processes. Apart from practical reasons, such scenario is very interesting from a fundamental point of view, because it allows exploring the optomechanical interaction in the presence of a strongly quantum-correlated field, the spontaneously down-converted mode. In this work we analyze such problem from two approximate but valuable perspectives: the classical limit and the limit of small quantum fluctuations. We show that, in the presence of optomechanical coupling, the well-known classical phase diagram of the optical problem gets modified by the appearance of new dynamical instabilities. As for the quantum-mechanical description, we prove the ability of the squeezed down-converted field to cool down the mechanical motion not only to thermal but also to squeezed thermal mechanical states, and in a way that can be much less sensitive to parameters (e.g., detuning of the driving laser) than standard sideband cooling.Comment: New version including the quantum linearized description of the system and appendices. Accepted in Physical Review

    Structure-Guided Recombination Creates an Artificial Family of Cytochromes P450

    Get PDF
    Creating artificial protein families affords new opportunities to explore the determinants of structure and biological function free from many of the constraints of natural selection. We have created an artificial family comprising ~3,000 P450 heme proteins that correctly fold and incorporate a heme cofactor by recombining three cytochromes P450 at seven crossover locations chosen to minimize structural disruption. Members of this protein family differ from any known sequence at an average of 72 and by as many as 109 amino acids. Most (>73%) of the properly folded chimeric P450 heme proteins are catalytically active peroxygenases; some are more thermostable than the parent proteins. A multiple sequence alignment of 955 chimeras, including both folded and not, is a valuable resource for sequence-structure-function studies. Logistic regression analysis of the multiple sequence alignment identifies key structural contributions to cytochrome P450 heme incorporation and peroxygenase activity and suggests possible structural differences between parents CYP102A1 and CYP102A2

    Optical memory based on ultrafast wavelength switching in a bistable microlaser

    Full text link
    We propose an optical memory cell based on ultrafast wavelength switching in coupled-cavity microlasers, featuring bistability between modes separated by several nanometers. A numerical implementation is demonstrated by simulating a two-dimensional photonic crystal microlaser. Switching times of less than 10 ps, switching energy around 15--30 fJ and on-off contrast of more than 40 dB are achieved. Theoretical guidelines for optimizing the performance of the memory cell in terms of switching time and energy are drawn.Comment: to appear in Optics Letter

    Explicit Communication of Geometric Design Intent in CAD: Evaluating Annotated Models in the Context of Reusability

    Get PDF
    CAD model reusability is largely determined by a proper communication of design intent, which is usually expressed implicitly within the model. Recent studies have suggested the use of 3D annotations as a method to embed design information in the model’s geometry and make part of the design knowledge explicitly available. In this paper, we evaluate the effectiveness of this method and analyze its impact in model alteration tasks. Our goal is to determine whether annotated models provide significant benefits when performing activities that require a direct manipulation of the geometry. We present the results of a study that measured user performance in two scenarios. First, we tested whether annotations are helpful when inadequate modeling assumptions can be made by designers. Second, we evaluated annotations as tools to communicate design decisions to select the most appropriate solution to a challenge when multiple options are available. In both cases, results show statistically significant benefits of annotated models, suggesting the use of this technique as a valuable approach to improve design intent communication

    Experimental and modeling studies on the synthesis and properties of higher fatty esters of corn starch

    Get PDF
    This paper describes a systematic study on the synthesis of higher fatty esters of corn starch (starch laurate and starch stéarate) by using the corresponding vinyl esters. The reactions were carried out in DMSO using basic catalysts (Na2HPO4, K2CO3, and Naacetate). The effect of the process variables (vinyl ester to starch ratio, catalyst intake, reaction temperature and type of the catalyst) on the degree of substitution (DS) of the starch laurate and starch stearate esters was determined by performing a total of 54 experiments. The results were adequately modeled using a non-linear multivariable regression model (R2≥0. 96). The basicity of the catalyst and the reaction temperature have the highest impact on the product DS. The thermal and mechanical properties of some representative product samples were determined. High-DS products (DS = 2.26-2.39) are totally amorphous whereas the low-DS ones (DS = 1.45-1.75) are still partially crystalline. The thermal stability of the esterlfied products is higher than that of native starch. Mechanical tests show that the products have a tensile strength (stress at break) between 2.7-3.5 MPa, elongation at break of 3-26%, and modulus of elasticity of 46-113 MPa.

    A family of thermostable fungal cellulases created by structure-guided recombination

    Get PDF
    SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous host in catalytically active form. Five of these chimeras have half-lives of thermal inactivation at 63°C that are greater than the most stable parent, CBH II enzyme from the thermophilic fungus Humicola insolens, which suggests that this chimera collection contains hundreds of highly stable cellulases. Twenty-five new sequences were designed based on mathematical modeling of the thermostabilities for the first set of chimeras. Ten of these sequences were expressed in active form; all 10 retained more activity than H. insolens CBH II after incubation at 63°C. The total of 15 validated thermostable CBH II enzymes have high sequence diversity, differing from their closest natural homologs at up to 63 amino acid positions. Selected purified thermostable chimeras hydrolyzed phosphoric acid swollen cellulose at temperatures 7 to 15°C higher than the parent enzymes. These chimeras also hydrolyzed as much or more cellulose than the parent CBH II enzymes in long-time cellulose hydrolysis assays and had pH/activity profiles as broad, or broader than, the parent enzymes. Generating this group of diverse, thermostable fungal CBH II chimeras is the first step in building an inventory of stable cellulases from which optimized enzyme mixtures for biomass conversion can be formulated

    Thermal rectification effects of multiple semiconductor quantum dot junctions

    Full text link
    Based on the multiple energy level Anderson model, this study theoretically examines the thermoelectric effects of semiconductor quantum dots (QDs) in the nonlinear response regime. The charge and heat currents in the sequential tunneling process are calculated by using the Keldysh Green's function technique. Results show that the thermal rectification effect can be observed in a multiple QD junction system, whereas the tunneling rate, size fluctuation, and location distribution of QD significantly influence the rectification efficiency.Comment: 5 pages, 8figure

    BMI as a Predictor for Potential Difficult Tracheal Intubation in Males

    Get PDF
    Introduction: Difficult tracheal intubation is a common source of mortality and morbidity insurgical and critical care settings. The incidence reported of difficult tracheal intubation is 0.1 to 13%and reaches 14% in the obese population. The objective of our retrospective study was to investigateand compare the utility of BMI as indicator of difficult tracheal intubation in males and females.Material and methods: We performed a retrospective chart review of patients who underwentabdominal surgeries with ASA I to V under general anesthesia requiring endotracheal intubation. Thefollowing information was obtained from medical records for analysis: gender, age, height, weight,BMI, length of patient stay in the Post Anesthesia Care Unit (PACU), past medical history of sleepapnea, Mallampati score, and the ASA classification assigned by the anesthesia care providerperforming the endotracheal intubation.Results: Of 4303 adult patients, 1970 (45.8%) men and 2333 (54.2%) women, were enrolled in thestudy. Within this group, a total of 1673 (38.9%) patients were morbidly obese. The average age of thestudy group was 51.4 ± 15.8 and the average BMI was 29.7 ± 8.2 kg/m². The overall incidence of theencountered difficult intubations was 5.23%, or 225 subjects. Thus, our results indicate that BMI is areliable predictor of difficult tracheal intubation predominantly in the male population; another strongpredictor, with a positive linear correlation, being the Mallampati score.Conclusions: In conclusion, our data shows that BMI is a reliable indicator of potential difficult trachealintubation only in male surgical patients
    corecore